Source code for torchvision.datasets.ucf101
import os
from .utils import list_dir
from .folder import make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset
[docs]class UCF101(VisionDataset):
"""
`UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset.
UCF101 is an action recognition video dataset.
This dataset consider every video as a collection of video clips of fixed size, specified
by ``frames_per_clip``, where the step in frames between each clip is given by
``step_between_clips``.
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
elements will come from video 1, and the next three elements from video 2.
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
frames in a video might be present.
Internally, it uses a VideoClips object to handle clip creation.
Args:
root (string): Root directory of the UCF101 Dataset.
annotation_path (str): path to the folder containing the split files
frames_per_clip (int): number of frames in a clip.
step_between_clips (int, optional): number of frames between each clip.
fold (int, optional): which fold to use. Should be between 1 and 3.
train (bool, optional): if ``True``, creates a dataset from the train split,
otherwise from the ``test`` split.
transform (callable, optional): A function/transform that takes in a TxHxWxC video
and returns a transformed version.
Returns:
tuple: A 3-tuple with the following entries:
- video (Tensor[T, H, W, C]): the `T` video frames
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
and `L` is the number of points
- label (int): class of the video clip
"""
def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1,
frame_rate=None, fold=1, train=True, transform=None,
_precomputed_metadata=None, num_workers=1, _video_width=0,
_video_height=0, _video_min_dimension=0, _audio_samples=0):
super(UCF101, self).__init__(root)
if not 1 <= fold <= 3:
raise ValueError("fold should be between 1 and 3, got {}".format(fold))
extensions = ('avi',)
self.fold = fold
self.train = train
classes = list(sorted(list_dir(root)))
class_to_idx = {classes[i]: i for i in range(len(classes))}
self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
self.classes = classes
video_list = [x[0] for x in self.samples]
video_clips = VideoClips(
video_list,
frames_per_clip,
step_between_clips,
frame_rate,
_precomputed_metadata,
num_workers=num_workers,
_video_width=_video_width,
_video_height=_video_height,
_video_min_dimension=_video_min_dimension,
_audio_samples=_audio_samples,
)
# we bookkeep the full version of video clips because we want to be able
# to return the meta data of full version rather than the subset version of
# video clips
self.full_video_clips = video_clips
self.indices = self._select_fold(video_list, annotation_path, fold, train)
self.video_clips = video_clips.subset(self.indices)
self.transform = transform
@property
def metadata(self):
return self.full_video_clips.metadata
def _select_fold(self, video_list, annotation_path, fold, train):
name = "train" if train else "test"
name = "{}list{:02d}.txt".format(name, fold)
f = os.path.join(annotation_path, name)
selected_files = []
with open(f, "r") as fid:
data = fid.readlines()
data = [x.strip().split(" ") for x in data]
data = [os.path.join(self.root, x[0]) for x in data]
selected_files.extend(data)
selected_files = set(selected_files)
indices = [i for i in range(len(video_list)) if video_list[i] in selected_files]
return indices
def __len__(self):
return self.video_clips.num_clips()
def __getitem__(self, idx):
video, audio, info, video_idx = self.video_clips.get_clip(idx)
label = self.samples[self.indices[video_idx]][1]
if self.transform is not None:
video = self.transform(video)
return video, audio, label