from functools import partial
import torch
import os
import PIL
from typing import Any, Callable, List, Optional, Union, Tuple
from .vision import VisionDataset
from .utils import download_file_from_google_drive, check_integrity, verify_str_arg
[docs]class CelebA(VisionDataset):
"""`Large-scale CelebFaces Attributes (CelebA) Dataset <http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
split (string): One of {'train', 'valid', 'test', 'all'}.
Accordingly dataset is selected.
target_type (string or list, optional): Type of target to use, ``attr``, ``identity``, ``bbox``,
or ``landmarks``. Can also be a list to output a tuple with all specified target types.
The targets represent:
``attr`` (np.array shape=(40,) dtype=int): binary (0, 1) labels for attributes
``identity`` (int): label for each person (data points with the same identity are the same person)
``bbox`` (np.array shape=(4,) dtype=int): bounding box (x, y, width, height)
``landmarks`` (np.array shape=(10,) dtype=int): landmark points (lefteye_x, lefteye_y, righteye_x,
righteye_y, nose_x, nose_y, leftmouth_x, leftmouth_y, rightmouth_x, rightmouth_y)
Defaults to ``attr``. If empty, ``None`` will be returned as target.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
base_folder = "celeba"
# There currently does not appear to be a easy way to extract 7z in python (without introducing additional
# dependencies). The "in-the-wild" (not aligned+cropped) images are only in 7z, so they are not available
# right now.
file_list = [
# File ID MD5 Hash Filename
("0B7EVK8r0v71pZjFTYXZWM3FlRnM", "00d2c5bc6d35e252742224ab0c1e8fcb", "img_align_celeba.zip"),
# ("0B7EVK8r0v71pbWNEUjJKdDQ3dGc", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_align_celeba_png.7z"),
# ("0B7EVK8r0v71peklHb0pGdDl6R28", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_celeba.7z"),
("0B7EVK8r0v71pblRyaVFSWGxPY0U", "75e246fa4810816ffd6ee81facbd244c", "list_attr_celeba.txt"),
("1_ee_0u7vcNLOfNLegJRHmolfH5ICW-XS", "32bd1bd63d3c78cd57e08160ec5ed1e2", "identity_CelebA.txt"),
("0B7EVK8r0v71pbThiMVRxWXZ4dU0", "00566efa6fedff7a56946cd1c10f1c16", "list_bbox_celeba.txt"),
("0B7EVK8r0v71pd0FJY3Blby1HUTQ", "cc24ecafdb5b50baae59b03474781f8c", "list_landmarks_align_celeba.txt"),
# ("0B7EVK8r0v71pTzJIdlJWdHczRlU", "063ee6ddb681f96bc9ca28c6febb9d1a", "list_landmarks_celeba.txt"),
("0B7EVK8r0v71pY0NSMzRuSXJEVkk", "d32c9cbf5e040fd4025c592c306e6668", "list_eval_partition.txt"),
]
def __init__(
self,
root: str,
split: str = "train",
target_type: Union[List[str], str] = "attr",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
import pandas
super(CelebA, self).__init__(root, transform=transform,
target_transform=target_transform)
self.split = split
if isinstance(target_type, list):
self.target_type = target_type
else:
self.target_type = [target_type]
if not self.target_type and self.target_transform is not None:
raise RuntimeError('target_transform is specified but target_type is empty')
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
split_map = {
"train": 0,
"valid": 1,
"test": 2,
"all": None,
}
split_ = split_map[verify_str_arg(split.lower(), "split",
("train", "valid", "test", "all"))]
fn = partial(os.path.join, self.root, self.base_folder)
splits = pandas.read_csv(fn("list_eval_partition.txt"), delim_whitespace=True, header=None, index_col=0)
identity = pandas.read_csv(fn("identity_CelebA.txt"), delim_whitespace=True, header=None, index_col=0)
bbox = pandas.read_csv(fn("list_bbox_celeba.txt"), delim_whitespace=True, header=1, index_col=0)
landmarks_align = pandas.read_csv(fn("list_landmarks_align_celeba.txt"), delim_whitespace=True, header=1)
attr = pandas.read_csv(fn("list_attr_celeba.txt"), delim_whitespace=True, header=1)
mask = slice(None) if split_ is None else (splits[1] == split_)
self.filename = splits[mask].index.values
self.identity = torch.as_tensor(identity[mask].values)
self.bbox = torch.as_tensor(bbox[mask].values)
self.landmarks_align = torch.as_tensor(landmarks_align[mask].values)
self.attr = torch.as_tensor(attr[mask].values)
self.attr = (self.attr + 1) // 2 # map from {-1, 1} to {0, 1}
self.attr_names = list(attr.columns)
def _check_integrity(self) -> bool:
for (_, md5, filename) in self.file_list:
fpath = os.path.join(self.root, self.base_folder, filename)
_, ext = os.path.splitext(filename)
# Allow original archive to be deleted (zip and 7z)
# Only need the extracted images
if ext not in [".zip", ".7z"] and not check_integrity(fpath, md5):
return False
# Should check a hash of the images
return os.path.isdir(os.path.join(self.root, self.base_folder, "img_align_celeba"))
def download(self) -> None:
import zipfile
if self._check_integrity():
print('Files already downloaded and verified')
return
for (file_id, md5, filename) in self.file_list:
download_file_from_google_drive(file_id, os.path.join(self.root, self.base_folder), filename, md5)
with zipfile.ZipFile(os.path.join(self.root, self.base_folder, "img_align_celeba.zip"), "r") as f:
f.extractall(os.path.join(self.root, self.base_folder))
def __getitem__(self, index: int) -> Tuple[Any, Any]:
X = PIL.Image.open(os.path.join(self.root, self.base_folder, "img_align_celeba", self.filename[index]))
target: Any = []
for t in self.target_type:
if t == "attr":
target.append(self.attr[index, :])
elif t == "identity":
target.append(self.identity[index, 0])
elif t == "bbox":
target.append(self.bbox[index, :])
elif t == "landmarks":
target.append(self.landmarks_align[index, :])
else:
# TODO: refactor with utils.verify_str_arg
raise ValueError("Target type \"{}\" is not recognized.".format(t))
if self.transform is not None:
X = self.transform(X)
if target:
target = tuple(target) if len(target) > 1 else target[0]
if self.target_transform is not None:
target = self.target_transform(target)
else:
target = None
return X, target
def __len__(self) -> int:
return len(self.attr)
def extra_repr(self) -> str:
lines = ["Target type: {target_type}", "Split: {split}"]
return '\n'.join(lines).format(**self.__dict__)