torchvision.utils¶
-
torchvision.utils.
make_grid
(tensor: Union[torch.Tensor, List[torch.Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False, range: Union[Tuple[int, int], NoneType] = None, scale_each: bool = False, pad_value: int = 0) → torch.Tensor[source]¶ Make a grid of images.
Parameters: - tensor (Tensor or list) – 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size.
- nrow (int, optional) – Number of images displayed in each row of the grid.
The final grid size is
(B / nrow, nrow)
. Default:8
. - padding (int, optional) – amount of padding. Default:
2
. - normalize (bool, optional) – If True, shift the image to the range (0, 1),
by the min and max values specified by
range
. Default:False
. - range (tuple, optional) – tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor.
- scale_each (bool, optional) – If
True
, scale each image in the batch of images separately rather than the (min, max) over all images. Default:False
. - pad_value (float, optional) – Value for the padded pixels. Default:
0
.
Example
See this notebook here
-
torchvision.utils.
save_image
(tensor: Union[torch.Tensor, List[torch.Tensor]], fp: Union[str, pathlib.Path, BinaryIO], nrow: int = 8, padding: int = 2, normalize: bool = False, range: Union[Tuple[int, int], NoneType] = None, scale_each: bool = False, pad_value: int = 0, format: Union[str, NoneType] = None) → None[source]¶ Save a given Tensor into an image file.
Parameters: - tensor (Tensor or list) – Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling
make_grid
. - fp (string or file object) – A filename or a file object
- format (Optional) – If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used.
- **kwargs – Other arguments are documented in
make_grid
.
- tensor (Tensor or list) – Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling