Shortcuts

Source code for torchvision.models.vgg

from functools import partial
from typing import Any, cast, Dict, List, Optional, Union

import torch
import torch.nn as nn

from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface


__all__ = [
    "VGG",
    "VGG11_Weights",
    "VGG11_BN_Weights",
    "VGG13_Weights",
    "VGG13_BN_Weights",
    "VGG16_Weights",
    "VGG16_BN_Weights",
    "VGG19_Weights",
    "VGG19_BN_Weights",
    "vgg11",
    "vgg11_bn",
    "vgg13",
    "vgg13_bn",
    "vgg16",
    "vgg16_bn",
    "vgg19",
    "vgg19_bn",
]


class VGG(nn.Module):
    def __init__(
        self, features: nn.Module, num_classes: int = 1000, init_weights: bool = True, dropout: float = 0.5
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        self.features = features
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(p=dropout),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=dropout),
            nn.Linear(4096, num_classes),
        )
        if init_weights:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x


def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:
    layers: List[nn.Module] = []
    in_channels = 3
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            v = cast(int, v)
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


cfgs: Dict[str, List[Union[str, int]]] = {
    "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"],
    "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M"],
}


def _vgg(cfg: str, batch_norm: bool, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any) -> VGG:
    if weights is not None:
        kwargs["init_weights"] = False
        if weights.meta["categories"] is not None:
            _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
    model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
    return model


_COMMON_META = {
    "min_size": (32, 32),
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
    "_docs": """These weights were trained from scratch by using a simplified training recipe.""",
}


[docs]class VGG11_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg11-8a719046.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 132863336, "_metrics": { "ImageNet-1K": { "acc@1": 69.020, "acc@5": 88.628, } }, "_ops": 7.609, "_file_size": 506.84, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG11_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg11_bn-6002323d.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 132868840, "_metrics": { "ImageNet-1K": { "acc@1": 70.370, "acc@5": 89.810, } }, "_ops": 7.609, "_file_size": 506.881, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG13_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg13-19584684.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 133047848, "_metrics": { "ImageNet-1K": { "acc@1": 69.928, "acc@5": 89.246, } }, "_ops": 11.308, "_file_size": 507.545, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG13_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 133053736, "_metrics": { "ImageNet-1K": { "acc@1": 71.586, "acc@5": 90.374, } }, "_ops": 11.308, "_file_size": 507.59, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG16_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg16-397923af.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 138357544, "_metrics": { "ImageNet-1K": { "acc@1": 71.592, "acc@5": 90.382, } }, "_ops": 15.47, "_file_size": 527.796, }, ) IMAGENET1K_FEATURES = Weights( # Weights ported from https://github.com/amdegroot/ssd.pytorch/ url="https://download.pytorch.org/models/vgg16_features-amdegroot-88682ab5.pth", transforms=partial( ImageClassification, crop_size=224, mean=(0.48235, 0.45882, 0.40784), std=(1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0), ), meta={ **_COMMON_META, "num_params": 138357544, "categories": None, "recipe": "https://github.com/amdegroot/ssd.pytorch#training-ssd", "_metrics": { "ImageNet-1K": { "acc@1": float("nan"), "acc@5": float("nan"), } }, "_ops": 15.47, "_file_size": 527.802, "_docs": """ These weights can't be used for classification because they are missing values in the `classifier` module. Only the `features` module has valid values and can be used for feature extraction. The weights were trained using the original input standardization method as described in the paper. """, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG16_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 138365992, "_metrics": { "ImageNet-1K": { "acc@1": 73.360, "acc@5": 91.516, } }, "_ops": 15.47, "_file_size": 527.866, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG19_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 143667240, "_metrics": { "ImageNet-1K": { "acc@1": 72.376, "acc@5": 90.876, } }, "_ops": 19.632, "_file_size": 548.051, }, ) DEFAULT = IMAGENET1K_V1
[docs]class VGG19_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 143678248, "_metrics": { "ImageNet-1K": { "acc@1": 74.218, "acc@5": 91.842, } }, "_ops": 19.632, "_file_size": 548.143, }, ) DEFAULT = IMAGENET1K_V1
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG11_Weights.IMAGENET1K_V1)) def vgg11(*, weights: Optional[VGG11_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-11 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG11_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG11_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG11_Weights :members: """ weights = VGG11_Weights.verify(weights) return _vgg("A", False, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG11_BN_Weights.IMAGENET1K_V1)) def vgg11_bn(*, weights: Optional[VGG11_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-11-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG11_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG11_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG11_BN_Weights :members: """ weights = VGG11_BN_Weights.verify(weights) return _vgg("A", True, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG13_Weights.IMAGENET1K_V1)) def vgg13(*, weights: Optional[VGG13_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-13 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG13_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG13_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG13_Weights :members: """ weights = VGG13_Weights.verify(weights) return _vgg("B", False, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG13_BN_Weights.IMAGENET1K_V1)) def vgg13_bn(*, weights: Optional[VGG13_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-13-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG13_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG13_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG13_BN_Weights :members: """ weights = VGG13_BN_Weights.verify(weights) return _vgg("B", True, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG16_Weights.IMAGENET1K_V1)) def vgg16(*, weights: Optional[VGG16_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-16 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG16_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG16_Weights :members: """ weights = VGG16_Weights.verify(weights) return _vgg("D", False, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG16_BN_Weights.IMAGENET1K_V1)) def vgg16_bn(*, weights: Optional[VGG16_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-16-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG16_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG16_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG16_BN_Weights :members: """ weights = VGG16_BN_Weights.verify(weights) return _vgg("D", True, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG19_Weights.IMAGENET1K_V1)) def vgg19(*, weights: Optional[VGG19_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-19 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG19_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG19_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG19_Weights :members: """ weights = VGG19_Weights.verify(weights) return _vgg("E", False, weights, progress, **kwargs)
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", VGG19_BN_Weights.IMAGENET1K_V1)) def vgg19_bn(*, weights: Optional[VGG19_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-19_BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG19_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG19_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG19_BN_Weights :members: """ weights = VGG19_BN_Weights.verify(weights) return _vgg("E", True, weights, progress, **kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources