• Docs >
  • Models and pre-trained weights
Shortcuts

Models and pre-trained weights

The torchvision.models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection, video classification, and optical flow.

General information on pre-trained weights

TorchVision offers pre-trained weights for every provided architecture, using the PyTorch torch.hub. Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_HOME environment variable. See torch.hub.load_state_dict_from_url() for details.

Note

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

Note

Backward compatibility is guaranteed for loading a serialized state_dict to the model created using old PyTorch version. On the contrary, loading entire saved models or serialized ScriptModules (serialized using older versions of PyTorch) may not preserve the historic behaviour. Refer to the following documentation

Initializing pre-trained models

As of v0.13, TorchVision offers a new Multi-weight support API for loading different weights to the existing model builder methods:

from torchvision.models import resnet50, ResNet50_Weights

# Old weights with accuracy 76.130%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)

# New weights with accuracy 80.858%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)

# Best available weights (currently alias for IMAGENET1K_V2)
# Note that these weights may change across versions
resnet50(weights=ResNet50_Weights.DEFAULT)

# Strings are also supported
resnet50(weights="IMAGENET1K_V2")

# No weights - random initialization
resnet50(weights=None)

Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:

from torchvision.models import resnet50, ResNet50_Weights

# Using pretrained weights:
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
resnet50(weights="IMAGENET1K_V1")
resnet50(pretrained=True)  # deprecated
resnet50(True)  # deprecated

# Using no weights:
resnet50(weights=None)
resnet50()
resnet50(pretrained=False)  # deprecated
resnet50(False)  # deprecated

Note that the pretrained parameter is now deprecated, using it will emit warnings and will be removed on v0.15.

Using the pre-trained models

Before using the pre-trained models, one must preprocess the image (resize with right resolution/interpolation, apply inference transforms, rescale the values etc). There is no standard way to do this as it depends on how a given model was trained. It can vary across model families, variants or even weight versions. Using the correct preprocessing method is critical and failing to do so may lead to decreased accuracy or incorrect outputs.

All the necessary information for the inference transforms of each pre-trained model is provided on its weights documentation. To simplify inference, TorchVision bundles the necessary preprocessing transforms into each model weight. These are accessible via the weight.transforms attribute:

# Initialize the Weight Transforms
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()

# Apply it to the input image
img_transformed = preprocess(img)

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

# Initialize model
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)

# Set model to eval mode
model.eval()

Listing and retrieving available models

As of v0.14, TorchVision offers a new mechanism which allows listing and retrieving models and weights by their names. Here are a few examples on how to use them:

# List available models
all_models = list_models()
classification_models = list_models(module=torchvision.models)

# Initialize models
m1 = get_model("mobilenet_v3_large", weights=None)
m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")

# Fetch weights
weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT

weights_enum = get_model_weights("quantized_mobilenet_v3_large")
assert weights_enum == MobileNet_V3_Large_QuantizedWeights

weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
assert weights_enum == weights_enum2

Here are the available public functions to retrieve models and their corresponding weights:

get_model(name, **config)

Gets the model name and configuration and returns an instantiated model.

get_model_weights(name)

Returns the weights enum class associated to the given model.

get_weight(name)

Gets the weights enum value by its full name.

list_models([module])

Returns a list with the names of registered models.

Using models from Hub

Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:

import torch

# Option 1: passing weights param as string
model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")

# Option 2: passing weights param as enum
weights = torch.hub.load("pytorch/vision", "get_weight", weights="ResNet50_Weights.IMAGENET1K_V2")
model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)

You can also retrieve all the available weights of a specific model via PyTorch Hub by doing:

import torch

weight_enum = torch.hub.load("pytorch/vision", "get_model_weights", name="resnet50")
print([weight for weight in weight_enum])

The only exception to the above are the detection models included on torchvision.models.detection. These models require TorchVision to be installed because they depend on custom C++ operators.

Classification

The following classification models are available, with or without pre-trained weights:


Here is an example of how to use the pre-trained image classification models:

from torchvision.io import read_image
from torchvision.models import resnet50, ResNet50_Weights

img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

Table of all available classification weights

Accuracies are reported on ImageNet-1K using single crops:

Weight

Acc@1

Acc@5

Params

GFLOPS

Recipe

AlexNet_Weights.IMAGENET1K_V1

56.522

79.066

61.1M

0.71

link

ConvNeXt_Base_Weights.IMAGENET1K_V1

84.062

96.87

88.6M

15.36

link

ConvNeXt_Large_Weights.IMAGENET1K_V1

84.414

96.976

197.8M

34.36

link

ConvNeXt_Small_Weights.IMAGENET1K_V1

83.616

96.65

50.2M

8.68

link

ConvNeXt_Tiny_Weights.IMAGENET1K_V1

82.52

96.146

28.6M

4.46

link

DenseNet121_Weights.IMAGENET1K_V1

74.434

91.972

8.0M

2.83

link

DenseNet161_Weights.IMAGENET1K_V1

77.138

93.56

28.7M

7.73

link

DenseNet169_Weights.IMAGENET1K_V1

75.6

92.806

14.1M

3.36

link

DenseNet201_Weights.IMAGENET1K_V1

76.896

93.37

20.0M

4.29

link

EfficientNet_B0_Weights.IMAGENET1K_V1

77.692

93.532

5.3M

0.39

link

EfficientNet_B1_Weights.IMAGENET1K_V1

78.642

94.186

7.8M

0.69

link

EfficientNet_B1_Weights.IMAGENET1K_V2

79.838

94.934

7.8M

0.69

link

EfficientNet_B2_Weights.IMAGENET1K_V1

80.608

95.31

9.1M

1.09

link

EfficientNet_B3_Weights.IMAGENET1K_V1

82.008

96.054

12.2M

1.83

link

EfficientNet_B4_Weights.IMAGENET1K_V1

83.384

96.594

19.3M

4.39

link

EfficientNet_B5_Weights.IMAGENET1K_V1

83.444

96.628

30.4M

10.27

link

EfficientNet_B6_Weights.IMAGENET1K_V1

84.008

96.916

43.0M

19.07

link

EfficientNet_B7_Weights.IMAGENET1K_V1

84.122

96.908

66.3M

37.75

link

EfficientNet_V2_L_Weights.IMAGENET1K_V1

85.808

97.788

118.5M

56.08

link

EfficientNet_V2_M_Weights.IMAGENET1K_V1

85.112

97.156

54.1M

24.58

link

EfficientNet_V2_S_Weights.IMAGENET1K_V1

84.228

96.878

21.5M

8.37

link

GoogLeNet_Weights.IMAGENET1K_V1

69.778

89.53

6.6M

1.5

link

Inception_V3_Weights.IMAGENET1K_V1

77.294

93.45

27.2M

5.71

link

MNASNet0_5_Weights.IMAGENET1K_V1

67.734

87.49

2.2M

0.1

link

MNASNet0_75_Weights.IMAGENET1K_V1

71.18

90.496

3.2M

0.21

link

MNASNet1_0_Weights.IMAGENET1K_V1

73.456

91.51

4.4M

0.31

link

MNASNet1_3_Weights.IMAGENET1K_V1

76.506

93.522

6.3M

0.53

link

MaxVit_T_Weights.IMAGENET1K_V1

83.7

96.722

30.9M

5.56

link

MobileNet_V2_Weights.IMAGENET1K_V1

71.878

90.286

3.5M

0.3

link

MobileNet_V2_Weights.IMAGENET1K_V2

72.154

90.822

3.5M

0.3

link

MobileNet_V3_Large_Weights.IMAGENET1K_V1

74.042

91.34

5.5M

0.22

link

MobileNet_V3_Large_Weights.IMAGENET1K_V2

75.274

92.566

5.5M

0.22

link

MobileNet_V3_Small_Weights.IMAGENET1K_V1

67.668

87.402

2.5M

0.06

link

RegNet_X_16GF_Weights.IMAGENET1K_V1

80.058

94.944

54.3M

15.94

link

RegNet_X_16GF_Weights.IMAGENET1K_V2

82.716

96.196

54.3M

15.94

link

RegNet_X_1_6GF_Weights.IMAGENET1K_V1

77.04

93.44

9.2M

1.6

link

RegNet_X_1_6GF_Weights.IMAGENET1K_V2

79.668

94.922

9.2M

1.6

link

RegNet_X_32GF_Weights.IMAGENET1K_V1

80.622

95.248

107.8M

31.74

link

RegNet_X_32GF_Weights.IMAGENET1K_V2

83.014

96.288

107.8M

31.74

link

RegNet_X_3_2GF_Weights.IMAGENET1K_V1

78.364

93.992

15.3M

3.18

link

RegNet_X_3_2GF_Weights.IMAGENET1K_V2

81.196

95.43

15.3M

3.18

link

RegNet_X_400MF_Weights.IMAGENET1K_V1

72.834

90.95

5.5M

0.41

link

RegNet_X_400MF_Weights.IMAGENET1K_V2

74.864

92.322

5.5M

0.41

link

RegNet_X_800MF_Weights.IMAGENET1K_V1

75.212

92.348

7.3M

0.8

link

RegNet_X_800MF_Weights.IMAGENET1K_V2

77.522

93.826

7.3M

0.8

link

RegNet_X_8GF_Weights.IMAGENET1K_V1

79.344

94.686

39.6M

8

link

RegNet_X_8GF_Weights.IMAGENET1K_V2

81.682

95.678

39.6M

8

link

RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1

88.228

98.682

644.8M

374.57

link

RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

86.068

97.844

644.8M

127.52

link

RegNet_Y_16GF_Weights.IMAGENET1K_V1

80.424

95.24

83.6M

15.91

link

RegNet_Y_16GF_Weights.IMAGENET1K_V2

82.886

96.328

83.6M

15.91

link

RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1

86.012

98.054

83.6M

46.73

link

RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

83.976

97.244

83.6M

15.91

link

RegNet_Y_1_6GF_Weights.IMAGENET1K_V1

77.95

93.966

11.2M

1.61

link

RegNet_Y_1_6GF_Weights.IMAGENET1K_V2

80.876

95.444

11.2M

1.61

link

RegNet_Y_32GF_Weights.IMAGENET1K_V1

80.878

95.34

145.0M

32.28

link

RegNet_Y_32GF_Weights.IMAGENET1K_V2

83.368

96.498

145.0M

32.28

link

RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1

86.838

98.362

145.0M

94.83

link

RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

84.622

97.48

145.0M

32.28

link

RegNet_Y_3_2GF_Weights.IMAGENET1K_V1

78.948

94.576

19.4M

3.18

link

RegNet_Y_3_2GF_Weights.IMAGENET1K_V2

81.982

95.972

19.4M

3.18

link

RegNet_Y_400MF_Weights.IMAGENET1K_V1

74.046

91.716

4.3M

0.4

link

RegNet_Y_400MF_Weights.IMAGENET1K_V2

75.804

92.742

4.3M

0.4

link

RegNet_Y_800MF_Weights.IMAGENET1K_V1

76.42

93.136

6.4M

0.83

link

RegNet_Y_800MF_Weights.IMAGENET1K_V2

78.828

94.502

6.4M

0.83

link

RegNet_Y_8GF_Weights.IMAGENET1K_V1

80.032

95.048

39.4M

8.47

link

RegNet_Y_8GF_Weights.IMAGENET1K_V2

82.828

96.33

39.4M

8.47

link

ResNeXt101_32X8D_Weights.IMAGENET1K_V1

79.312

94.526

88.8M

16.41

link

ResNeXt101_32X8D_Weights.IMAGENET1K_V2

82.834

96.228

88.8M

16.41

link

ResNeXt101_64X4D_Weights.IMAGENET1K_V1

83.246

96.454

83.5M

15.46

link

ResNeXt50_32X4D_Weights.IMAGENET1K_V1

77.618

93.698

25.0M

4.23

link

ResNeXt50_32X4D_Weights.IMAGENET1K_V2

81.198

95.34

25.0M

4.23

link

ResNet101_Weights.IMAGENET1K_V1

77.374

93.546

44.5M

7.8

link

ResNet101_Weights.IMAGENET1K_V2

81.886

95.78

44.5M

7.8

link

ResNet152_Weights.IMAGENET1K_V1

78.312

94.046

60.2M

11.51

link

ResNet152_Weights.IMAGENET1K_V2

82.284

96.002

60.2M

11.51

link

ResNet18_Weights.IMAGENET1K_V1

69.758

89.078

11.7M

1.81

link

ResNet34_Weights.IMAGENET1K_V1

73.314

91.42

21.8M

3.66

link

ResNet50_Weights.IMAGENET1K_V1

76.13

92.862

25.6M

4.09

link

ResNet50_Weights.IMAGENET1K_V2

80.858

95.434

25.6M

4.09

link

ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1

60.552

81.746

1.4M

0.04

link

ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1

69.362

88.316

2.3M

0.14

link

ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1

72.996

91.086

3.5M

0.3

link

ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1

76.23

93.006

7.4M

0.58

link

SqueezeNet1_0_Weights.IMAGENET1K_V1

58.092

80.42

1.2M

0.82

link

SqueezeNet1_1_Weights.IMAGENET1K_V1

58.178

80.624

1.2M

0.35

link

Swin_B_Weights.IMAGENET1K_V1

83.582

96.64

87.8M

15.43

link

Swin_S_Weights.IMAGENET1K_V1

83.196

96.36

49.6M

8.74

link

Swin_T_Weights.IMAGENET1K_V1

81.474

95.776

28.3M

4.49

link

Swin_V2_B_Weights.IMAGENET1K_V1

84.112

96.864

87.9M

20.32

link

Swin_V2_S_Weights.IMAGENET1K_V1

83.712

96.816

49.7M

11.55

link

Swin_V2_T_Weights.IMAGENET1K_V1

82.072

96.132

28.4M

5.94

link

VGG11_BN_Weights.IMAGENET1K_V1

70.37

89.81

132.9M

7.61

link

VGG11_Weights.IMAGENET1K_V1

69.02

88.628

132.9M

7.61

link

VGG13_BN_Weights.IMAGENET1K_V1

71.586

90.374

133.1M

11.31

link

VGG13_Weights.IMAGENET1K_V1

69.928

89.246

133.0M

11.31

link

VGG16_BN_Weights.IMAGENET1K_V1

73.36

91.516

138.4M

15.47

link

VGG16_Weights.IMAGENET1K_V1

71.592

90.382

138.4M

15.47

link

VGG16_Weights.IMAGENET1K_FEATURES

nan

nan

138.4M

15.47

link

VGG19_BN_Weights.IMAGENET1K_V1

74.218

91.842

143.7M

19.63

link

VGG19_Weights.IMAGENET1K_V1

72.376

90.876

143.7M

19.63

link

ViT_B_16_Weights.IMAGENET1K_V1

81.072

95.318

86.6M

17.56

link

ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1

85.304

97.65

86.9M

55.48

link

ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1

81.886

96.18

86.6M

17.56

link

ViT_B_32_Weights.IMAGENET1K_V1

75.912

92.466

88.2M

4.41

link

ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1

88.552

98.694

633.5M

1016.72

link

ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1

85.708

97.73

632.0M

167.29

link

ViT_L_16_Weights.IMAGENET1K_V1

79.662

94.638

304.3M

61.55

link

ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1

88.064

98.512

305.2M

361.99

link

ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1

85.146

97.422

304.3M

61.55

link

ViT_L_32_Weights.IMAGENET1K_V1

76.972

93.07

306.5M

15.38

link

Wide_ResNet101_2_Weights.IMAGENET1K_V1

78.848

94.284

126.9M

22.75

link

Wide_ResNet101_2_Weights.IMAGENET1K_V2

82.51

96.02

126.9M

22.75

link

Wide_ResNet50_2_Weights.IMAGENET1K_V1

78.468

94.086

68.9M

11.4

link

Wide_ResNet50_2_Weights.IMAGENET1K_V2

81.602

95.758

68.9M

11.4

link

Quantized models

The following architectures provide support for INT8 quantized models, with or without pre-trained weights:


Here is an example of how to use the pre-trained quantized image classification models:

from torchvision.io import read_image
from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights

img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = ResNet50_QuantizedWeights.DEFAULT
model = resnet50(weights=weights, quantize=True)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

Table of all available quantized classification weights

Accuracies are reported on ImageNet-1K using single crops:

Weight

Acc@1

Acc@5

Params

GIPS

Recipe

GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1

69.826

89.404

6.6M

1.5

link

Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1

77.176

93.354

27.2M

5.71

link

MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1

71.658

90.15

3.5M

0.3

link

MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1

73.004

90.858

5.5M

0.22

link

ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1

78.986

94.48

88.8M

16.41

link

ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V2

82.574

96.132

88.8M

16.41

link

ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1

82.898

96.326

83.5M

15.46

link

ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1

69.494

88.882

11.7M

1.81

link

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1

75.92

92.814

25.6M

4.09

link

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2

80.282

94.976

25.6M

4.09

link

ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1

57.972

79.78

1.4M

0.04

link

ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1

68.36

87.582

2.3M

0.14

link

ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1

72.052

90.7

3.5M

0.3

link

ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1

75.354

92.488

7.4M

0.58

link

Semantic Segmentation

Warning

The segmentation module is in Beta stage, and backward compatibility is not guaranteed.

The following semantic segmentation models are available, with or without pre-trained weights:


Here is an example of how to use the pre-trained semantic segmentation models:

from torchvision.io.image import read_image
from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
from torchvision.transforms.functional import to_pil_image

img = read_image("gallery/assets/dog1.jpg")

# Step 1: Initialize model with the best available weights
weights = FCN_ResNet50_Weights.DEFAULT
model = fcn_resnet50(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and visualize the prediction
prediction = model(batch)["out"]
normalized_masks = prediction.softmax(dim=1)
class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
mask = normalized_masks[0, class_to_idx["dog"]]
to_pil_image(mask).show()

The classes of the pre-trained model outputs can be found at weights.meta["categories"]. The output format of the models is illustrated in Semantic segmentation models.

Table of all available semantic segmentation weights

All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:

Weight

Mean IoU

pixelwise Acc

Params

GFLOPS

Recipe

DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1

60.3

91.2

11.0M

10.45

link

DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1

67.4

92.4

61.0M

258.74

link

DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1

66.4

92.4

42.0M

178.72

link

FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1

63.7

91.9

54.3M

232.74

link

FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1

60.5

91.4

35.3M

152.72

link

LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1

57.9

91.2

3.2M

2.09

link

Object Detection, Instance Segmentation and Person Keypoint Detection

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision. The models expect a list of Tensor[C, H, W]. Check the constructor of the models for more information.

Warning

The detection module is in Beta stage, and backward compatibility is not guaranteed.

Object Detection

The following object detection models are available, with or without pre-trained weights:


Here is an example of how to use the pre-trained object detection models:

from torchvision.io.image import read_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
from torchvision.utils import draw_bounding_boxes
from torchvision.transforms.functional import to_pil_image

img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = [preprocess(img)]

# Step 4: Use the model and visualize the prediction
prediction = model(batch)[0]
labels = [weights.meta["categories"][i] for i in prediction["labels"]]
box = draw_bounding_boxes(img, boxes=prediction["boxes"],
                          labels=labels,
                          colors="red",
                          width=4, font_size=30)
im = to_pil_image(box.detach())
im.show()

The classes of the pre-trained model outputs can be found at weights.meta["categories"]. For details on how to plot the bounding boxes of the models, you may refer to Instance segmentation models.

Table of all available Object detection weights

Box MAPs are reported on COCO val2017:

Weight

Box MAP

Params

GFLOPS

Recipe

FCOS_ResNet50_FPN_Weights.COCO_V1

39.2

32.3M

128.21

link

FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1

22.8

19.4M

0.72

link

FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1

32.8

19.4M

4.49

link

FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1

46.7

43.7M

280.37

link

FasterRCNN_ResNet50_FPN_Weights.COCO_V1

37

41.8M

134.38

link

RetinaNet_ResNet50_FPN_V2_Weights.COCO_V1

41.5

38.2M

152.24

link

RetinaNet_ResNet50_FPN_Weights.COCO_V1

36.4

34.0M

151.54

link

SSD300_VGG16_Weights.COCO_V1

25.1

35.6M

34.86

link

SSDLite320_MobileNet_V3_Large_Weights.COCO_V1

21.3

3.4M

0.58

link

Instance Segmentation

The following instance segmentation models are available, with or without pre-trained weights:


For details on how to plot the masks of the models, you may refer to Instance segmentation models.

Table of all available Instance segmentation weights

Box and Mask MAPs are reported on COCO val2017:

Weight

Box MAP

Mask MAP

Params

GFLOPS

Recipe

MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1

47.4

41.8

46.4M

333.58

link

MaskRCNN_ResNet50_FPN_Weights.COCO_V1

37.9

34.6

44.4M

134.38

link

Keypoint Detection

The following person keypoint detection models are available, with or without pre-trained weights:


The classes of the pre-trained model outputs can be found at weights.meta["keypoint_names"]. For details on how to plot the bounding boxes of the models, you may refer to Visualizing keypoints.

Table of all available Keypoint detection weights

Box and Keypoint MAPs are reported on COCO val2017:

Weight

Box MAP

Keypoint MAP

Params

GFLOPS

Recipe

KeypointRCNN_ResNet50_FPN_Weights.COCO_LEGACY

50.6

61.1

59.1M

133.92

link

KeypointRCNN_ResNet50_FPN_Weights.COCO_V1

54.6

65

59.1M

137.42

link

Video Classification

Warning

The video module is in Beta stage, and backward compatibility is not guaranteed.

The following video classification models are available, with or without pre-trained weights:


Here is an example of how to use the pre-trained video classification models:

from torchvision.io.video import read_video
from torchvision.models.video import r3d_18, R3D_18_Weights

vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
vid = vid[:32]  # optionally shorten duration

# Step 1: Initialize model with the best available weights
weights = R3D_18_Weights.DEFAULT
model = r3d_18(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(vid).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
label = prediction.argmax().item()
score = prediction[label].item()
category_name = weights.meta["categories"][label]
print(f"{category_name}: {100 * score}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

Table of all available video classification weights

Accuracies are reported on Kinetics-400 using single crops for clip length 16:

Weight

Acc@1

Acc@5

Params

GFLOPS

Recipe

MC3_18_Weights.KINETICS400_V1

63.96

84.13

11.7M

43.34

link

MViT_V1_B_Weights.KINETICS400_V1

78.477

93.582

36.6M

70.6

link

MViT_V2_S_Weights.KINETICS400_V1

80.757

94.665

34.5M

64.22

link

R2Plus1D_18_Weights.KINETICS400_V1

67.463

86.175

31.5M

40.52

link

R3D_18_Weights.KINETICS400_V1

63.2

83.479

33.4M

40.7

link

S3D_Weights.KINETICS400_V1

68.368

88.05

8.3M

17.98

link

Swin3D_B_Weights.KINETICS400_V1

79.427

94.386

88.0M

140.67

link

Swin3D_B_Weights.KINETICS400_IMAGENET22K_V1

81.643

95.574

88.0M

140.67

link

Swin3D_S_Weights.KINETICS400_V1

79.521

94.158

49.8M

82.84

link

Swin3D_T_Weights.KINETICS400_V1

77.715

93.519

28.2M

43.88

link

Optical Flow

The following Optical Flow models are available, with or without pre-trained

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources