Shortcuts

Source code for torchvision.models.googlenet

import warnings
from collections import namedtuple
from functools import partial
from typing import Any, Callable, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface


__all__ = ["GoogLeNet", "GoogLeNetOutputs", "_GoogLeNetOutputs", "GoogLeNet_Weights", "googlenet"]


GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"])
GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]}

# Script annotations failed with _GoogleNetOutputs = namedtuple ...
# _GoogLeNetOutputs set here for backwards compat
_GoogLeNetOutputs = GoogLeNetOutputs


class GoogLeNet(nn.Module):
    __constants__ = ["aux_logits", "transform_input"]

    def __init__(
        self,
        num_classes: int = 1000,
        aux_logits: bool = True,
        transform_input: bool = False,
        init_weights: Optional[bool] = None,
        blocks: Optional[List[Callable[..., nn.Module]]] = None,
        dropout: float = 0.2,
        dropout_aux: float = 0.7,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        if blocks is None:
            blocks = [BasicConv2d, Inception, InceptionAux]
        if init_weights is None:
            warnings.warn(
                "The default weight initialization of GoogleNet will be changed in future releases of "
                "torchvision. If you wish to keep the old behavior (which leads to long initialization times"
                " due to scipy/scipy#11299), please set init_weights=True.",
                FutureWarning,
            )
            init_weights = True
        if len(blocks) != 3:
            raise ValueError(f"blocks length should be 3 instead of {len(blocks)}")
        conv_block = blocks[0]
        inception_block = blocks[1]
        inception_aux_block = blocks[2]

        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = conv_block(64, 64, kernel_size=1)
        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)

        if aux_logits:
            self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux)
            self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux)
        else:
            self.aux1 = None  # type: ignore[assignment]
            self.aux2 = None  # type: ignore[assignment]

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(p=dropout)
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)

    def _transform_input(self, x: Tensor) -> Tensor:
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
        return x

    def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        aux1: Optional[Tensor] = None
        if self.aux1 is not None:
            if self.training:
                aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        aux2: Optional[Tensor] = None
        if self.aux2 is not None:
            if self.training:
                aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        return x, aux2, aux1

    @torch.jit.unused
    def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
        if self.training and self.aux_logits:
            return _GoogLeNetOutputs(x, aux2, aux1)
        else:
            return x  # type: ignore[return-value]

    def forward(self, x: Tensor) -> GoogLeNetOutputs:
        x = self._transform_input(x)
        x, aux1, aux2 = self._forward(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)


class Inception(nn.Module):
    def __init__(
        self,
        in_channels: int,
        ch1x1: int,
        ch3x3red: int,
        ch3x3: int,
        ch5x5red: int,
        ch5x5: int,
        pool_proj: int,
        conv_block: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        self.branch3 = nn.Sequential(
            conv_block(in_channels, ch5x5red, kernel_size=1),
            # Here, kernel_size=3 instead of kernel_size=5 is a known bug.
            # Please see https://github.com/pytorch/vision/issues/906 for details.
            conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1),
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
            conv_block(in_channels, pool_proj, kernel_size=1),
        )

    def _forward(self, x: Tensor) -> List[Tensor]:
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return outputs

    def forward(self, x: Tensor) -> Tensor:
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
    def __init__(
        self,
        in_channels: int,
        num_classes: int,
        conv_block: Optional[Callable[..., nn.Module]] = None,
        dropout: float = 0.7,
    ) -> None:
        super().__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv = conv_block(in_channels, 128, kernel_size=1)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x: Tensor) -> Tensor:
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = F.adaptive_avg_pool2d(x, (4, 4))
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        # N x 1024
        x = self.dropout(x)
        # N x 1024
        x = self.fc2(x)
        # N x 1000 (num_classes)

        return x


class BasicConv2d(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None:
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)


[docs]class GoogLeNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/googlenet-1378be20.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 6624904, "min_size": (15, 15), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet", "_metrics": { "ImageNet-1K": { "acc@1": 69.778, "acc@5": 89.530, } }, "_ops": 1.498, "_file_size": 49.731, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", GoogLeNet_Weights.IMAGENET1K_V1)) def googlenet(*, weights: Optional[GoogLeNet_Weights] = None, progress: bool = True, **kwargs: Any) -> GoogLeNet: """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_. Args: weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.GoogLeNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.GoogLeNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.GoogLeNet_Weights :members: """ weights = GoogLeNet_Weights.verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "init_weights", False) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = GoogLeNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) if not original_aux_logits: model.aux_logits = False model.aux1 = None # type: ignore[assignment] model.aux2 = None # type: ignore[assignment] else: warnings.warn( "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" ) return model

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources