Shortcuts

Source code for torchvision.datasets.svhn

import os.path
from typing import Any, Callable, Optional, Tuple

import numpy as np
from PIL import Image

from .utils import check_integrity, download_url, verify_str_arg
from .vision import VisionDataset


[docs]class SVHN(VisionDataset): """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset. Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which expect the class labels to be in the range `[0, C-1]` .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format. Args: root (string): Root directory of the dataset where the data is stored. split (string): One of {'train', 'test', 'extra'}. Accordingly dataset is selected. 'extra' is Extra training set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373", ], "test": [ "http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3", ], "extra": [ "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7", ], } def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat["X"] # loading from the .mat file gives an np.ndarray of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.labels = loaded_mat["y"].astype(np.int64).squeeze() # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.labels, self.labels == 10, 0) self.data = np.transpose(self.data, (3, 2, 0, 1))
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img, (1, 2, 0))) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target
def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self) -> None: md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources