Source code for torchvision.datasets.inaturalist
import os
import os.path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
CATEGORIES_2021 = ["kingdom", "phylum", "class", "order", "family", "genus"]
DATASET_URLS = {
"2017": "https://ml-inat-competition-datasets.s3.amazonaws.com/2017/train_val_images.tar.gz",
"2018": "https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz",
"2019": "https://ml-inat-competition-datasets.s3.amazonaws.com/2019/train_val2019.tar.gz",
"2021_train": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train.tar.gz",
"2021_train_mini": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train_mini.tar.gz",
"2021_valid": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/val.tar.gz",
}
DATASET_MD5 = {
"2017": "7c784ea5e424efaec655bd392f87301f",
"2018": "b1c6952ce38f31868cc50ea72d066cc3",
"2019": "c60a6e2962c9b8ccbd458d12c8582644",
"2021_train": "e0526d53c7f7b2e3167b2b43bb2690ed",
"2021_train_mini": "db6ed8330e634445efc8fec83ae81442",
"2021_valid": "f6f6e0e242e3d4c9569ba56400938afc",
}
[docs]class INaturalist(VisionDataset):
"""`iNaturalist <https://github.com/visipedia/inat_comp>`_ Dataset.
Args:
root (string): Root directory of dataset where the image files are stored.
This class does not require/use annotation files.
version (string, optional): Which version of the dataset to download/use. One of
'2017', '2018', '2019', '2021_train', '2021_train_mini', '2021_valid'.
Default: `2021_train`.
target_type (string or list, optional): Type of target to use, for 2021 versions, one of:
- ``full``: the full category (species)
- ``kingdom``: e.g. "Animalia"
- ``phylum``: e.g. "Arthropoda"
- ``class``: e.g. "Insecta"
- ``order``: e.g. "Coleoptera"
- ``family``: e.g. "Cleridae"
- ``genus``: e.g. "Trichodes"
for 2017-2019 versions, one of:
- ``full``: the full (numeric) category
- ``super``: the super category, e.g. "Amphibians"
Can also be a list to output a tuple with all specified target types.
Defaults to ``full``.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
def __init__(
self,
root: str,
version: str = "2021_train",
target_type: Union[List[str], str] = "full",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self.version = verify_str_arg(version, "version", DATASET_URLS.keys())
super().__init__(os.path.join(root, version), transform=transform, target_transform=target_transform)
os.makedirs(root, exist_ok=True)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
self.all_categories: List[str] = []
# map: category type -> name of category -> index
self.categories_index: Dict[str, Dict[str, int]] = {}
# list indexed by category id, containing mapping from category type -> index
self.categories_map: List[Dict[str, int]] = []
if not isinstance(target_type, list):
target_type = [target_type]
if self.version[:4] == "2021":
self.target_type = [verify_str_arg(t, "target_type", ("full", *CATEGORIES_2021)) for t in target_type]
self._init_2021()
else:
self.target_type = [verify_str_arg(t, "target_type", ("full", "super")) for t in target_type]
self._init_pre2021()
# index of all files: (full category id, filename)
self.index: List[Tuple[int, str]] = []
for dir_index, dir_name in enumerate(self.all_categories):
files = os.listdir(os.path.join(self.root, dir_name))
for fname in files:
self.index.append((dir_index, fname))
def _init_2021(self) -> None:
"""Initialize based on 2021 layout"""
self.all_categories = sorted(os.listdir(self.root))
# map: category type -> name of category -> index
self.categories_index = {k: {} for k in CATEGORIES_2021}
for dir_index, dir_name in enumerate(self.all_categories):
pieces = dir_name.split("_")
if len(pieces) != 8:
raise RuntimeError(f"Unexpected category name {dir_name}, wrong number of pieces")
if pieces[0] != f"{dir_index:05d}":
raise RuntimeError(f"Unexpected category id {pieces[0]}, expecting {dir_index:05d}")
cat_map = {}
for cat, name in zip(CATEGORIES_2021, pieces[1:7]):
if name in self.categories_index[cat]:
cat_id = self.categories_index[cat][name]
else:
cat_id = len(self.categories_index[cat])
self.categories_index[cat][name] = cat_id
cat_map[cat] = cat_id
self.categories_map.append(cat_map)
def _init_pre2021(self) -> None:
"""Initialize based on 2017-2019 layout"""
# map: category type -> name of category -> index
self.categories_index = {"super": {}}
cat_index = 0
super_categories = sorted(os.listdir(self.root))
for sindex, scat in enumerate(super_categories):
self.categories_index["super"][scat] = sindex
subcategories = sorted(os.listdir(os.path.join(self.root, scat)))
for subcat in subcategories:
if self.version == "2017":
# this version does not use ids as directory names
subcat_i = cat_index
cat_index += 1
else:
try:
subcat_i = int(subcat)
except ValueError:
raise RuntimeError(f"Unexpected non-numeric dir name: {subcat}")
if subcat_i >= len(self.categories_map):
old_len = len(self.categories_map)
self.categories_map.extend([{}] * (subcat_i - old_len + 1))
self.all_categories.extend([""] * (subcat_i - old_len + 1))
if self.categories_map[subcat_i]:
raise RuntimeError(f"Duplicate category {subcat}")
self.categories_map[subcat_i] = {"super": sindex}
self.all_categories[subcat_i] = os.path.join(scat, subcat)
# validate the dictionary
for cindex, c in enumerate(self.categories_map):
if not c:
raise RuntimeError(f"Missing category {cindex}")
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where the type of target specified by target_type.
"""
cat_id, fname = self.index[index]
img = Image.open(os.path.join(self.root, self.all_categories[cat_id], fname))
target: Any = []
for t in self.target_type:
if t == "full":
target.append(cat_id)
else:
target.append(self.categories_map[cat_id][t])
target = tuple(target) if len(target) > 1 else target[0]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.index)
[docs] def category_name(self, category_type: str, category_id: int) -> str:
"""
Args:
category_type(str): one of "full", "kingdom", "phylum", "class", "order", "family", "genus" or "super"
category_id(int): an index (class id) from this category
Returns:
the name of the category
"""
if category_type == "full":
return self.all_categories[category_id]
else:
if category_type not in self.categories_index:
raise ValueError(f"Invalid category type '{category_type}'")
else:
for name, id in self.categories_index[category_type].items():
if id == category_id:
return name
raise ValueError(f"Invalid category id {category_id} for {category_type}")
def _check_integrity(self) -> bool:
return os.path.exists(self.root) and len(os.listdir(self.root)) > 0
def download(self) -> None:
if self._check_integrity():
raise RuntimeError(
f"The directory {self.root} already exists. "
f"If you want to re-download or re-extract the images, delete the directory."
)
base_root = os.path.dirname(self.root)
download_and_extract_archive(
DATASET_URLS[self.version], base_root, filename=f"{self.version}.tgz", md5=DATASET_MD5[self.version]
)
orig_dir_name = os.path.join(base_root, os.path.basename(DATASET_URLS[self.version]).rstrip(".tar.gz"))
if not os.path.exists(orig_dir_name):
raise RuntimeError(f"Unable to find downloaded files at {orig_dir_name}")
os.rename(orig_dir_name, self.root)
print(f"Dataset version '{self.version}' has been downloaded and prepared for use")