Source code for torchvision.datasets.eurosat
import os
from typing import Callable, Optional
from .folder import ImageFolder
from .utils import download_and_extract_archive
[docs]class EuroSAT(ImageFolder):
"""RGB version of the `EuroSAT <https://github.com/phelber/eurosat>`_ Dataset.
Args:
root (string): Root directory of dataset where ``root/eurosat`` exists.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If True, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again. Default is False.
"""
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self.root = os.path.expanduser(root)
self._base_folder = os.path.join(self.root, "eurosat")
self._data_folder = os.path.join(self._base_folder, "2750")
if download:
self.download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it")
super().__init__(self._data_folder, transform=transform, target_transform=target_transform)
self.root = os.path.expanduser(root)
def __len__(self) -> int:
return len(self.samples)
def _check_exists(self) -> bool:
return os.path.exists(self._data_folder)
def download(self) -> None:
if self._check_exists():
return
os.makedirs(self._base_folder, exist_ok=True)
download_and_extract_archive(
"https://madm.dfki.de/files/sentinel/EuroSAT.zip",
download_root=self._base_folder,
md5="c8fa014336c82ac7804f0398fcb19387",
)