mobilenet_v2¶
- torchvision.models.mobilenet_v2(*, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any) MobileNetV2 [source]¶
MobileNetV2 architecture from the MobileNetV2: Inverted Residuals and Linear Bottlenecks paper.
- Parameters:
weights (
MobileNet_V2_Weights
, optional) – The pretrained weights to use. SeeMobileNet_V2_Weights
below for more details, and possible values. By default, no pre-trained weights are used.progress (bool, optional) – If True, displays a progress bar of the download to stderr. Default is True.
**kwargs – parameters passed to the
torchvision.models.mobilenetv2.MobileNetV2
base class. Please refer to the source code for more details about this class.
- class torchvision.models.MobileNet_V2_Weights(value)[source]¶
The model builder above accepts the following values as the
weights
parameter.MobileNet_V2_Weights.DEFAULT
is equivalent toMobileNet_V2_Weights.IMAGENET1K_V2
. You can also use strings, e.g.weights='DEFAULT'
orweights='IMAGENET1K_V1'
.MobileNet_V2_Weights.IMAGENET1K_V1:
These weights reproduce closely the results of the paper using a simple training recipe.
acc@1 (on ImageNet-1K)
71.878
acc@5 (on ImageNet-1K)
90.286
num_params
3504872
min_size
height=1, width=1
categories
tench, goldfish, great white shark, … (997 omitted)
recipe
The inference transforms are available at
MobileNet_V2_Weights.IMAGENET1K_V1.transforms
and perform the following preprocessing operations: AcceptsPIL.Image
, batched(B, C, H, W)
and single(C, H, W)
imagetorch.Tensor
objects. The images are resized toresize_size=[256]
usinginterpolation=InterpolationMode.BILINEAR
, followed by a central crop ofcrop_size=[224]
. Finally the values are first rescaled to[0.0, 1.0]
and then normalized usingmean=[0.485, 0.456, 0.406]
andstd=[0.229, 0.224, 0.225]
.MobileNet_V2_Weights.IMAGENET1K_V2:
These weights improve upon the results of the original paper by using a modified version of TorchVision’s new training recipe. Also available as
MobileNet_V2_Weights.DEFAULT
.acc@1 (on ImageNet-1K)
72.154
acc@5 (on ImageNet-1K)
90.822
num_params
3504872
min_size
height=1, width=1
categories
tench, goldfish, great white shark, … (997 omitted)
recipe
The inference transforms are available at
MobileNet_V2_Weights.IMAGENET1K_V2.transforms
and perform the following preprocessing operations: AcceptsPIL.Image
, batched(B, C, H, W)
and single(C, H, W)
imagetorch.Tensor
objects. The images are resized toresize_size=[232]
usinginterpolation=InterpolationMode.BILINEAR
, followed by a central crop ofcrop_size=[224]
. Finally the values are first rescaled to[0.0, 1.0]
and then normalized usingmean=[0.485, 0.456, 0.406]
andstd=[0.229, 0.224, 0.225]
.