Source code for torchvision.datasets.kinetics
from .utils import list_dir
from .folder import find_classes, make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset
[docs]class Kinetics400(VisionDataset):
"""
`Kinetics-400 <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_
dataset.
Kinetics-400 is an action recognition video dataset.
This dataset consider every video as a collection of video clips of fixed size, specified
by ``frames_per_clip``, where the step in frames between each clip is given by
``step_between_clips``.
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
elements will come from video 1, and the next three elements from video 2.
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
frames in a video might be present.
Internally, it uses a VideoClips object to handle clip creation.
Args:
root (string): Root directory of the Kinetics-400 Dataset. Should be structured as follows:
.. code::
root/
├── class1
│ ├── clip1.avi
│ ├── clip2.avi
│ └── ...
└── class2
├── clipx.avi
└── ...
frames_per_clip (int): number of frames in a clip
step_between_clips (int): number of frames between each clip
transform (callable, optional): A function/transform that takes in a TxHxWxC video
and returns a transformed version.
Returns:
tuple: A 3-tuple with the following entries:
- video (Tensor[T, H, W, C]): the `T` video frames
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
and `L` is the number of points
- label (int): class of the video clip
"""
def __init__(self, root, frames_per_clip, step_between_clips=1, frame_rate=None,
extensions=('avi',), transform=None, _precomputed_metadata=None,
num_workers=1, _video_width=0, _video_height=0,
_video_min_dimension=0, _audio_samples=0, _audio_channels=0):
super(Kinetics400, self).__init__(root)
self.classes, class_to_idx = find_classes(self.root)
self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
video_list = [x[0] for x in self.samples]
self.video_clips = VideoClips(
video_list,
frames_per_clip,
step_between_clips,
frame_rate,
_precomputed_metadata,
num_workers=num_workers,
_video_width=_video_width,
_video_height=_video_height,
_video_min_dimension=_video_min_dimension,
_audio_samples=_audio_samples,
_audio_channels=_audio_channels,
)
self.transform = transform
@property
def metadata(self):
return self.video_clips.metadata
def __len__(self):
return self.video_clips.num_clips()
def __getitem__(self, idx):
video, audio, info, video_idx = self.video_clips.get_clip(idx)
label = self.samples[video_idx][1]
if self.transform is not None:
video = self.transform(video)
return video, audio, label