Shortcuts

torchvision.models

The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.

Classification

The models subpackage contains definitions for the following model architectures for image classification:

You can construct a model with random weights by calling its constructor:

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet_v2 = models.mobilenet_v2()
mobilenet_v3_large = models.mobilenet_v3_large()
mobilenet_v3_small = models.mobilenet_v3_small()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()

We provide pre-trained models, using the PyTorch torch.utils.model_zoo. These can be constructed by passing pretrained=True:

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=True)
mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)

Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_MODEL_ZOO environment variable. See torch.utils.model_zoo.load_url() for details.

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example here

The process for obtaining the values of mean and std is roughly equivalent to:

import torch
from torchvision import datasets, transforms as T

transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
dataset = datasets.ImageNet(".", split="train", transform=transform)

means = []
stds = []
for img in subset(dataset):
    means.append(torch.mean(img))
    stds.append(torch.std(img))

mean = torch.mean(torch.tensor(means))
std = torch.mean(torch.tensor(stds))

Unfortunately, the concrete subset that was used is lost. For more information see this discussion or these experiments.

ImageNet 1-crop error rates (224x224)

Model

Acc@1

Acc@5

AlexNet

56.522

79.066

VGG-11

69.020

88.628

VGG-13

69.928

89.246

VGG-16

71.592

90.382

VGG-19

72.376

90.876

VGG-11 with batch normalization

70.370

89.810

VGG-13 with batch normalization

71.586

90.374

VGG-16 with batch normalization

73.360

91.516

VGG-19 with batch normalization

74.218

91.842

ResNet-18

69.758

89.078

ResNet-34

73.314

91.420

ResNet-50

76.130

92.862

ResNet-101

77.374

93.546

ResNet-152

78.312

94.046

SqueezeNet 1.0

58.092

80.420

SqueezeNet 1.1

58.178

80.624

Densenet-121

74.434

91.972

Densenet-169

75.600

92.806

Densenet-201

76.896

93.370

Densenet-161

77.138

93.560

Inception v3

77.294

93.450

GoogleNet

69.778

89.530

ShuffleNet V2 x1.0

69.362

88.316

ShuffleNet V2 x0.5

60.552

81.746

MobileNet V2

71.878

90.286

MobileNet V3 Large

74.042

91.340

MobileNet V3 Small

67.668

87.402

ResNeXt-50-32x4d

77.618

93.698

ResNeXt-101-32x8d

79.312

94.526

Wide ResNet-50-2

78.468

94.086

Wide ResNet-101-2

78.848

94.284

MNASNet 1.0

73.456

91.510

MNASNet 0.5

67.734

87.490

Alexnet

torchvision.models.alexnet(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.alexnet.AlexNet[source]

AlexNet model architecture from the “One weird trick…” paper.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

VGG

torchvision.models.vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 11-layer model (configuration “A”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 11-layer model (configuration “A”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 13-layer model (configuration “B”) “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 13-layer model (configuration “B”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 16-layer model (configuration “D”) “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg16_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 16-layer model (configuration “D”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 19-layer model (configuration “E”) “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.vgg.VGG[source]

VGG 19-layer model (configuration ‘E’) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

ResNet

torchvision.models.resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNet-18 model from “Deep Residual Learning for Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Examples using resnet18:

torchvision.models.resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNet-34 model from “Deep Residual Learning for Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNet-50 model from “Deep Residual Learning for Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNet-101 model from “Deep Residual Learning for Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNet-152 model from “Deep Residual Learning for Image Recognition”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

SqueezeNet

torchvision.models.squeezenet1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.squeezenet.SqueezeNet[source]

SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size” paper.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.squeezenet1_1(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.squeezenet.SqueezeNet[source]

SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

DenseNet

torchvision.models.densenet121(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.densenet.DenseNet[source]

Densenet-121 model from “Densely Connected Convolutional Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • memory_efficient (bool) – but slower. Default: False. See “paper”.

torchvision.models.densenet169(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.densenet.DenseNet[source]

Densenet-169 model from “Densely Connected Convolutional Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • memory_efficient (bool) –

    but slower. Default: False. See “paper”.

torchvision.models.densenet161(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.densenet.DenseNet[source]

Densenet-161 model from “Densely Connected Convolutional Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • memory_efficient (bool) –

    but slower. Default: False. See “paper”.

torchvision.models.densenet201(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.densenet.DenseNet[source]

Densenet-201 model from “Densely Connected Convolutional Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • memory_efficient (bool) –

    but slower. Default: False. See “paper”.

Inception v3

torchvision.models.inception_v3(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.inception.Inception3[source]

Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.

Note

Important: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • aux_logits (bool) – If True, add an auxiliary branch that can improve training. Default: True

  • transform_input (bool) – If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: False

Note

This requires scipy to be installed

GoogLeNet

torchvision.models.googlenet(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.googlenet.GoogLeNet[source]

GoogLeNet (Inception v1) model architecture from “Going Deeper with Convolutions”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • aux_logits (bool) – If True, adds two auxiliary branches that can improve training. Default: False when pretrained is True otherwise True

  • transform_input (bool) – If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: False

Note

This requires scipy to be installed

ShuffleNet v2

torchvision.models.shufflenet_v2_x0_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.shufflenetv2.ShuffleNetV2[source]

Constructs a ShuffleNetV2 with 0.5x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.shufflenet_v2_x1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.shufflenetv2.ShuffleNetV2[source]

Constructs a ShuffleNetV2 with 1.0x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.shufflenet_v2_x1_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.shufflenetv2.ShuffleNetV2[source]

Constructs a ShuffleNetV2 with 1.5x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.shufflenet_v2_x2_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.shufflenetv2.ShuffleNetV2[source]

Constructs a ShuffleNetV2 with 2.0x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

MobileNet v2

torchvision.models.mobilenet_v2(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mobilenetv2.MobileNetV2[source]

Constructs a MobileNetV2 architecture from “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

MobileNet v3

torchvision.models.mobilenet_v3_large(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mobilenetv3.MobileNetV3[source]

Constructs a large MobileNetV3 architecture from “Searching for MobileNetV3”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.mobilenet_v3_small(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mobilenetv3.MobileNetV3[source]

Constructs a small MobileNetV3 architecture from “Searching for MobileNetV3”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

ResNext

torchvision.models.resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNeXt-50 32x4d model from “Aggregated Residual Transformation for Deep Neural Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

ResNeXt-101 32x8d model from “Aggregated Residual Transformation for Deep Neural Networks”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Wide ResNet

torchvision.models.wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

Wide ResNet-50-2 model from “Wide Residual Networks”.

The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.resnet.ResNet[source]

Wide ResNet-101-2 model from “Wide Residual Networks”.

The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

MNASNet

torchvision.models.mnasnet0_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mnasnet.MNASNet[source]

MNASNet with depth multiplier of 0.5 from “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.mnasnet0_75(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mnasnet.MNASNet[source]

MNASNet with depth multiplier of 0.75 from “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.mnasnet1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mnasnet.MNASNet[source]

MNASNet with depth multiplier of 1.0 from “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

torchvision.models.mnasnet1_3(pretrained: bool = False, progress: bool = True, **kwargs: Any) → torchvision.models.mnasnet.MNASNet[source]

MNASNet with depth multiplier of 1.3 from “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Quantized Models

The following architectures provide support for INT8 quantized models. You can get a model with random weights by calling its constructor:

import torchvision.models as models
googlenet = models.quantization.googlenet()
inception_v3 = models.quantization.inception_v3()
mobilenet_v2 = models.quantization.mobilenet_v2()
mobilenet_v3_large = models.quantization.mobilenet_v3_large()
resnet18 = models.quantization.resnet18()
resnet50 = models.quantization.resnet50()
resnext101_32x8d = models.quantization.resnext101_32x8d()
shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()
shufflenet_v2_x1_5 = models.quantization.shufflenet_v2_x1_5()
shufflenet_v2_x2_0 = models.quantization.shufflenet_v2_x2_0()

Obtaining a pre-trained quantized model can be done with a few lines of code:

import torchvision.models as models
model = models.quantization.mobilenet_v2(pretrained=True, quantize=True)
model.eval()
# run the model with quantized inputs and weights
out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

Model

Acc@1

Acc@5

MobileNet V2

71.658

90.150

MobileNet V3 Large

73.004

90.858

ShuffleNet V2

68.360

87.582

ResNet 18

69.494

88.882

ResNet 50

75.920

92.814

ResNext 101 32x8d

78.986

94.480

Inception V3

77.176

93.354

GoogleNet

69.826

89.404

Semantic Segmentation

The models subpackage contains definitions for the following model architectures for semantic segmentation:

As with image classification models, all pre-trained models expect input images normalized in the same way. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. They have been trained on images resized such that their minimum size is 520.

For details on how to plot the masks of such models, you may refer to Semantic segmentation models.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are present in the Pascal VOC dataset. You can see more information on how the subset has been selected in references/segmentation/coco_utils.py. The classes that the pre-trained model outputs are the following, in order:

['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

Network

mean IoU

global pixelwise acc

FCN ResNet50

60.5

91.4

FCN ResNet101

63.7

91.9

DeepLabV3 ResNet50

66.4

92.4

DeepLabV3 ResNet101

67.4

92.4

DeepLabV3 MobileNetV3-Large

60.3

91.2

LR-ASPP MobileNetV3-Large

57.9

91.2

Fully Convolutional Networks

torchvision.models.segmentation.fcn_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]

Constructs a Fully-Convolutional Network model with a ResNet-50 backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • aux_loss (bool) – If True, it uses an auxiliary loss

Examples using fcn_resnet50:

torchvision.models.segmentation.fcn_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]

Constructs a Fully-Convolutional Network model with a ResNet-101 backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • aux_loss (bool) – If True, it uses an auxiliary loss

DeepLabV3

torchvision.models.segmentation.deeplabv3_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]

Constructs a DeepLabV3 model with a ResNet-50 backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • aux_loss (bool) – If True, it uses an auxiliary loss

Examples using deeplabv3_resnet50:

torchvision.models.segmentation.deeplabv3_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]

Constructs a DeepLabV3 model with a ResNet-101 backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – The number of classes

  • aux_loss (bool) – If True, include an auxiliary classifier

torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]

Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • aux_loss (bool) – If True, it uses an auxiliary loss

LR-ASPP

torchvision.models.segmentation.lraspp_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, **kwargs)[source]

Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone.

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

Examples using lraspp_mobilenet_v3_large:

Object Detection, Instance Segmentation and Person Keypoint Detection

The models subpackage contains definitions for the following model architectures for detection:

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision.

The models expect a list of Tensor[C, H, W], in the range 0-1. The models internally resize the images but the behaviour varies depending on the model. Check the constructor of the models for more information. The output format of such models is illustrated in Instance segmentation models.

For object detection and instance segmentation, the pre-trained models return the predictions of the following classes:

COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]

Here are the summary of the accuracies for the models trained on the instances set of COCO train2017 and evaluated on COCO val2017.

Network

box AP

mask AP

keypoint AP

Faster R-CNN ResNet-50 FPN

37.0

Faster R-CNN MobileNetV3-Large FPN

32.8

Faster R-CNN MobileNetV3-Large 320 FPN

22.8

RetinaNet ResNet-50 FPN

36.4

SSD300 VGG16

25.1

SSDlite320 MobileNetV3-Large

21.3

Mask R-CNN ResNet-50 FPN

37.9

34.6

For person keypoint detection, the accuracies for the pre-trained models are as follows

Network

box AP

mask AP

keypoint AP

Keypoint R-CNN ResNet-50 FPN

54.6

65.0

For person keypoint detection, the pre-trained model return the keypoints in the following order:

COCO_PERSON_KEYPOINT_NAMES = [
    'nose',
    'left_eye',
    'right_eye',
    'left_ear',
    'right_ear',
    'left_shoulder',
    'right_shoulder',
    'left_elbow',
    'right_elbow',
    'left_wrist',
    'right_wrist',
    'left_hip',
    'right_hip',
    'left_knee',
    'right_knee',
    'left_ankle',
    'right_ankle'
]

Runtime characteristics

The implementations of the models for object detection, instance segmentation and keypoint detection are efficient.

In the following table, we use 8 GPUs to report the results. During training, we use a batch size of 2 per GPU for all models except SSD which uses 4 and SSDlite which uses 24. During testing a batch size of 1 is used.

For test time, we report the time for the model evaluation and postprocessing (including mask pasting in image), but not the time for computing the precision-recall.

Network

train time (s / it)

test time (s / it)

memory (GB)

Faster R-CNN ResNet-50 FPN

0.2288

0.0590

5.2

Faster R-CNN MobileNetV3-Large FPN

0.1020

0.0415

1.0

Faster R-CNN MobileNetV3-Large 320 FPN

0.0978

0.0376

0.6

RetinaNet ResNet-50 FPN

0.2514

0.0939

4.1

SSD300 VGG16

0.2093

0.0744

1.5

SSDlite320 MobileNetV3-Large

0.1773

0.0906

1.5

Mask R-CNN ResNet-50 FPN

0.2728

0.0903

5.4

Keypoint R-CNN ResNet-50 FPN

0.3789

0.1242

6.8

Faster R-CNN

torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes.

The behavior of the model changes depending if it is in training or evaluation mode.

During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:

  • boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the class label for each ground-truth box

The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN.

During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where N is the number of detections:

  • boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the predicted labels for each detection

  • scores (Tensor[N]): the scores of each detection

For more details on the output, you may refer to Instance segmentation models.

Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

Example:

>>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
>>> # For training
>>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
>>> labels = torch.randint(1, 91, (4, 11))
>>> images = list(image for image in images)
>>> targets = []
>>> for i in range(len(images)):
>>>     d = {}
>>>     d['boxes'] = boxes[i]
>>>     d['labels'] = labels[i]
>>>     targets.append(d)
>>> output = model(images, targets)
>>> # For inference
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
>>>
>>> # optionally, if you want to export the model to ONNX:
>>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.

Examples using fasterrcnn_resnet50_fpn:

torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See fasterrcnn_resnet50_fpn() for more details.

Example:

>>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.

torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See fasterrcnn_resnet50_fpn() for more details.

Example:

>>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.

RetinaNet

torchvision.models.detection.retinanet_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a RetinaNet model with a ResNet-50-FPN backbone.

The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes.

The behavior of the model changes depending if it is in training or evaluation mode.

During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:

  • boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the class label for each ground-truth box

The model returns a Dict[Tensor] during training, containing the classification and regression losses.

During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where N is the number of detections:

  • boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the predicted labels for each detection

  • scores (Tensor[N]): the scores of each detection

For more details on the output, you may refer to Instance segmentation models.

Example:

>>> model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.

Examples using retinanet_resnet50_fpn:

SSD

torchvision.models.detection.ssd300_vgg16(pretrained: bool = False, progress: bool = True, num_classes: int = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs: Any)[source]

Constructs an SSD model with input size 300x300 and a VGG16 backbone.

Reference: “SSD: Single Shot MultiBox Detector”.

The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes but they will be resized to a fixed size before passing it to the backbone.

The behavior of the model changes depending if it is in training or evaluation mode.

During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:

  • boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the class label for each ground-truth box

The model returns a Dict[Tensor] during training, containing the classification and regression losses.

During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where N is the number of detections:

  • boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the predicted labels for each detection

  • scores (Tensor[N]): the scores for each detection

Example

>>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.

Examples using ssd300_vgg16:

SSDlite

torchvision.models.detection.ssdlite320_mobilenet_v3_large(pretrained: bool = False, progress: bool = True, num_classes: int = 91, pretrained_backbone: bool = False, trainable_backbone_layers: Optional[int] = None, norm_layer: Optional[Callable[[...], torch.nn.modules.module.Module]] = None, **kwargs: Any)[source]

Constructs an SSDlite model with input size 320x320 and a MobileNetV3 Large backbone, as described at “Searching for MobileNetV3” and “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.

See ssd300_vgg16() for more details.

Example

>>> model = torchvision.models.detection.ssdlite320_mobilenet_v3_large(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 320, 320), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.

  • norm_layer (callable, optional) – Module specifying the normalization layer to use.

Examples using ssdlite320_mobilenet_v3_large:

Mask R-CNN

torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a Mask R-CNN model with a ResNet-50-FPN backbone.

The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes.

The behavior of the model changes depending if it is in training or evaluation mode.

During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:

  • boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the class label for each ground-truth box

  • masks (UInt8Tensor[N, H, W]): the segmentation binary masks for each instance

The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN, and the mask loss.

During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where N is the number of detected instances:

  • boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the predicted labels for each instance

  • scores (Tensor[N]): the scores or each instance

  • masks (UInt8Tensor[N, 1, H, W]): the predicted masks for each instance, in 0-1 range. In order to obtain the final segmentation masks, the soft masks can be thresholded, generally with a value of 0.5 (mask >= 0.5)

For more details on the output and on how to plot the masks, you may refer to Instance segmentation models.

Mask R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

Example:

>>> model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
>>>
>>> # optionally, if you want to export the model to ONNX:
>>> torch.onnx.export(model, x, "mask_rcnn.onnx", opset_version = 11)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.

Examples using maskrcnn_resnet50_fpn:

Keypoint R-CNN

torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=2, num_keypoints=17, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs)[source]

Constructs a Keypoint R-CNN model with a ResNet-50-FPN backbone.

The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes.

The behavior of the model changes depending if it is in training or evaluation mode.

During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:

  • boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the class label for each ground-truth box

  • keypoints (FloatTensor[N, K, 3]): the K keypoints location for each of the N instances, in the format [x, y, visibility], where visibility=0 means that the keypoint is not visible.

The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN, and the keypoint loss.

During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where N is the number of detected instances:

  • boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.

  • labels (Int64Tensor[N]): the predicted labels for each instance

  • scores (Tensor[N]): the scores or each instance

  • keypoints (FloatTensor[N, K, 3]): the locations of the predicted keypoints, in [x, y, v] format.

For more details on the output, you may refer to Instance segmentation models.

Keypoint R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

Example:

>>> model = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
>>>
>>> # optionally, if you want to export the model to ONNX:
>>> torch.onnx.export(model, x, "keypoint_rcnn.onnx", opset_version = 11)
Parameters
  • pretrained (bool) – If True, returns a model pre-trained on COCO train2017

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • num_classes (int) – number of output classes of the model (including the background)

  • num_keypoints (int) – number of keypoints, default 17

  • pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet

  • trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.

Examples using keypointrcnn_resnet50_fpn:

Video classification

We provide models for action recognition pre-trained on Kinetics-400. They have all been trained with the scripts provided in references/video_classification.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989].

Note

The normalization parameters are different from the image classification ones, and correspond to the mean and std from Kinetics-400.

Note

For now, normalization code can be found in references/video_classification/transforms.py, see the Normalize function there. Note that it differs from standard normalization for images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

Network

Clip acc@1

Clip acc@5

ResNet 3D 18

52.75

75.45

ResNet MC 18

53.90

76.29

ResNet (2+1)D

57.50

78.81

ResNet 3D

torchvision.models.video.r3d_18(pretrained=False, progress=True, **kwargs)[source]

Construct 18 layer Resnet3D model as in https://arxiv.org/abs/1711.11248

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on Kinetics-400

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns

R3D-18 network

Return type

nn.Module

ResNet Mixed Convolution

torchvision.models.video.mc3_18(pretrained=False, progress=True, **kwargs)[source]

Constructor for 18 layer Mixed Convolution network as in https://arxiv.org/abs/1711.11248

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on Kinetics-400

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns

MC3 Network definition

Return type

nn.Module

ResNet (2+1)D

torchvision.models.video.r2plus1d_18(pretrained=False, progress=True, **kwargs)[source]

Constructor for the 18 layer deep R(2+1)D network as in https://arxiv.org/abs/1711.11248

Parameters
  • pretrained (bool) – If True, returns a model pre-trained on Kinetics-400

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns

R(2+1)D-18 network

Return type

nn.Module

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources