torcheval.metrics.functional.topk_multilabel_accuracy¶
-
torcheval.metrics.functional.
topk_multilabel_accuracy
(input: Tensor, target: Tensor, *, criteria: str = 'exact_match', k: int = 2) Tensor [source]¶ Compute multilabel accuracy score, which is the frequency of the top k label predicted matching target. Its class version is
torcheval.metrics.TopKMultilabelAccuracy
. See alsobinary_accuracy
,multiclass_accuracy
,multilabel_accuracy
Parameters: - input (Tensor) – Tensor of logits/probabilities with shape of (n_sample, n_class).
- target (Tensor) – Tensor of ground truth labels with shape of (n_sample, n_class).
- criteria –
- [default] (- 'exact_match') – The set of top-k labels predicted for a sample must exactly match the corresponding set of labels in target. Also known as subset accuracy.
- 'hamming' (-) – Fraction of top-k correct labels over total number of labels.
- 'overlap' (-) – The set of top-k labels predicted for a sample must overlap with the corresponding set of labels in target.
- 'contain' (-) – The set of top-k labels predicted for a sample must contain the corresponding set of labels in target.
- 'belong' (-) – The set of top-k labels predicted for a sample must (fully) belong to the corresponding set of labels in target.
- k – Number of top probabilities to be considered. K should be an integer greater than or equal to 1.
Examples:
>>> import torch >>> from torcheval.metrics.functional import topk_multilabel_accuracy >>> input = torch.tensor([[0.1, 0.5, 0.2], [0.3, 0.2, 0.1], [0.2, 0.4, 0.5], [0, 0.1, 0.9]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]]) >>> topk_multilabel_accuracy(input, target, k = 2) tensor(0) # 0 / 4 >>> input = torch.tensor([[0.1, 0.5, 0.2], [0.3, 0.2, 0.1], [0.2, 0.4, 0.5], [0, 0.1, 0.9]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]]) >>> topk_multilabel_accuracy(input, target, criteria="hamming", k = 2) tensor(0.583) # 7 / 12 >>> input = torch.tensor([[0.1, 0.5, 0.2], [0.3, 0.2, 0.1], [0.2, 0.4, 0.5], [0, 0.1, 0.9]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]]) >>> topk_multilabel_accuracy(input, target, criteria="overlap", k = 2) tensor(1) # 4 / 4 >>> input = torch.tensor([[0.1, 0.5, 0.2], [0.3, 0.2, 0.1], [0.2, 0.4, 0.5], [0, 0.1, 0.9]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]]) >>> topk_multilabel_accuracy(input, target, criteria="contain", k = 2) tensor(0.5) # 2 / 4 >>> input = torch.tensor([[0.1, 0.5, 0.2], [0.3, 0.2, 0.1], [0.2, 0.4, 0.5], [0, 0.1, 0.9]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 0]]) >>> topk_multilabel_accuracy(input, target, criteria="belong", k = 2) tensor(0.25) # 1 / 4