torcheval.metrics.functional.peak_signal_noise_ratio¶
-
torcheval.metrics.functional.
peak_signal_noise_ratio
(input: Tensor, target: Tensor, data_range: Optional[float] = None) Tensor [source]¶ Compute the peak signal-to-noise ratio between two images. It’s class version is torcheval.metrics.PeakSignalNoiseRatio
Parameters: - input (Tensor) – Input image
(N, C, H, W)
. - target (Tensor) – Target image
(N, C, H, W)
. - data_range (float) – the range of the input images. Default: None.
If None, the input range computed from the target data
(target.max() - targert.min())
.
Examples:
>>> import torch >>> from torcheval.metrics.functional import peak_signal_noise_ratio >>> input = torch.tensor([[0.1, 0.2], [0.3, 0.4]]) >>> target = input * 0.9 >>> peak_signal_noise_ratio(input, target) tensor(19.8767)
- input (Tensor) – Input image