torcheval.metrics.functional.multiclass_precision_recall_curve¶
-
torcheval.metrics.functional.
multiclass_precision_recall_curve
(input: Tensor, target: Tensor, *, num_classes: Optional[int] = None) Tuple[List[Tensor], List[Tensor], List[Tensor]] [source]¶ Returns precision-recall pairs and their corresponding thresholds for multi-class classification tasks. If a class is missing from the target tensor, its recall values are set to 1.0.
Its class version is
torcheval.metrics.MulticlassPrecisionRecallCurve
. See alsobinary_precision_recall_curve
,multilabel_precision_recall_curve
Parameters: - input (Tensor) – Tensor of label predictions It should be probabilities or logits with shape of (n_sample, n_class).
- target (Tensor) – Tensor of ground truth labels with shape of (n_samples, ).
- num_classes (Optional) – Number of classes. Set to the second dimension of the input if num_classes is None.
Returns: - List[torch.Tensor], recall: List[torch.Tensor], thresholds: List[torch.Tensor])
precision: List of precision result. Each index indicates the result of a class. recall: List of recall result. Each index indicates the result of a class. thresholds: List of threshold. Each index indicates the result of a class.
Return type: a tuple of (precision
Examples:
>>> import torch >>> from torcheval.metrics.functional import multiclass_precision_recall_curve >>> input = torch.tensor([[0.1, 0.1, 0.1, 0.1], [0.5, 0.5, 0.5, 0.5], [0.7, 0.7, 0.7, 0.7], [0.8, 0.8, 0.8, 0.8]]) >>> target = torch.tensor([0, 1, 2, 3]) >>> multiclass_precision_recall_curve(input, target, num_classes=4) ([tensor([0.2500, 0.0000, 0.0000, 0.0000, 1.0000]), tensor([0.2500, 0.3333, 0.0000, 0.0000, 1.0000]), tensor([0.2500, 0.3333, 0.5000, 0.0000, 1.0000]), tensor([0.2500, 0.3333, 0.5000, 1.0000, 1.0000])], [tensor([1., 0., 0., 0., 0.]), tensor([1., 1., 0., 0., 0.]), tensor([1., 1., 1., 0., 0.]), tensor([1., 1., 1., 1., 0.])], [tensor([0.1000, 0.5000, 0.7000, 0.8000]), tensor([0.1000, 0.5000, 0.7000, 0.8000]), tensor([0.1000, 0.5000, 0.7000, 0.8000]), tensor([0.1000, 0.5000, 0.7000, 0.8000])])