torcheval.metrics.functional.binary_precision_recall_curve¶
-
torcheval.metrics.functional.
binary_precision_recall_curve
(input: Tensor, target: Tensor) Tuple[Tensor, Tensor, Tensor] [source]¶ Returns precision-recall pairs and their corresponding thresholds for binary classification tasks. If a class is missing from the target tensor, its recall values are set to 1.0.
Its class version is
torcheval.metrics.BinaryPrecisionRecallCurve
. See alsomulticlass_precision_recall_curve
,multilabel_precision_recall_curve
Parameters: - input (Tensor) – Tensor of label predictions It should be probabilities or logits with shape of (n_sample, ).
- target (Tensor) – Tensor of ground truth labels with shape of (n_samples, ).
Returns: - precision (Tensor): Tensor of precision result. Its shape is (n_thresholds + 1, )
- recall (Tensor): Tensor of recall result. Its shape is (n_thresholds + 1, )
- thresholds (Tensor): Tensor of threshold. Its shape is (n_thresholds, )
Return type: Tuple
Examples:
>>> import torch >>> from torcheval.metrics.functional import binary_precision_recall_curve >>> input = torch.tensor([0.1, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 0, 1, 1]) >>> binary_precision_recall_curve(input, target) (tensor([0.5000, 0.6667, 1.0000, 1.0000, 1.0000]), tensor([1.0000, 1.0000, 1.0000, 0.5000, 0.0000]), tensor([0.1000, 0.5000, 0.7000, 0.8000]))