Shortcuts

torcheval.metrics.PeakSignalNoiseRatio

class torcheval.metrics.PeakSignalNoiseRatio(data_range: Optional[float] = None, *, device: Optional[device] = None)[source]

Compute the PSNR (Peak Signal to Noise Ratio) between two images. Its functional version is torcheval.metrics.functional.psnr

Parameters:data_range (float) – the range of the input images. Default: None. If None, the range computed from the target data (target.max() - targert.min()).

Examples:

>>> import torch
>>> from torcheval.metrics import PeakSignalNoiseRatio
>>> metric = PeakSignalNoiseRatio()
>>> input = torch.tensor([[0.1, 0.2], [0.3, 0.4]])
>>> target = input * 0.9
>>> metric.update(input, target)
>>> metric.compute()
tensor(19.8767)
__init__(data_range: Optional[float] = None, *, device: Optional[device] = None) None[source]

Initialize a metric object and its internal states.

Use self._add_state() to initialize state variables of your metric class. The state variables should be either torch.Tensor, a list of torch.Tensor, or a dictionary with torch.Tensor as values

Methods

__init__([data_range, device]) Initialize a metric object and its internal states.
compute() Return the peak signal-to-noise ratio.
load_state_dict(state_dict[, strict]) Loads metric state variables from state_dict.
merge_state(metrics) Merge the metric state with its counterparts from other metric instances.
reset() Reset the metric state variables to their default value.
state_dict() Save metric state variables in state_dict.
to(device, *args, **kwargs) Move tensors in metric state variables to device.
update(input, target) Update the metric state with new input.

Attributes

device The last input device of Metric.to().

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources