Shortcuts

torcheval.metrics.FrechetInceptionDistance

class torcheval.metrics.FrechetInceptionDistance(model: Optional[Module] = None, feature_dim: int = 2048, device: Optional[device] = None)[source]
__init__(model: Optional[Module] = None, feature_dim: int = 2048, device: Optional[device] = None) None[source]

Computes the Frechet Inception Distance (FID) between two distributions of images (real and generated).

The original paper: https://arxiv.org/pdf/1706.08500.pdf

Parameters:
  • model (nn.Module) – Module used to compute feature activations. If None, a default InceptionV3 model will be used.
  • feature_dim (int) – The number of features in the model’s output, the default number is 2048 for default InceptionV3.
  • device (torch.device) – The device where the computations will be performed. If None, the default device will be used.

Methods

__init__([model, feature_dim, device]) Computes the Frechet Inception Distance (FID) between two distributions of images (real and generated).
compute() Compute the FID.
load_state_dict(state_dict[, strict]) Loads metric state variables from state_dict.
merge_state(metrics) Merge the state of another FID instance into this instance.
reset() Reset the metric state variables to their default value.
state_dict() Save metric state variables in state_dict.
to(device, *args, **kwargs) Move tensors in metric state variables to device.
update(images, is_real) Update the states with a batch of real and fake images.

Attributes

device The last input device of Metric.to().

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources