torcheval.metrics.BinaryPrecisionRecallCurve¶
-
class
torcheval.metrics.
BinaryPrecisionRecallCurve
(*, device: Optional[device] = None)[source]¶ Returns precision-recall pairs and their corresponding thresholds for binary classification tasks. If a class is missing from the target tensor, its recall values are set to 1.0.
Its functional version is
torcheval.metrics.functional.binary_precision_recall_curve()
. See alsoMulticlassPrecisionRecallCurve
,MultilabelPrecisionRecallCurve
>>> import torch >>> from torcheval.metrics import BinaryPrecisionRecallCurve >>> metric = BinaryPrecisionRecallCurve() >>> input = torch.tensor([0.1, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 0, 1, 1]) >>> metric.update(input, target) >>> metric.compute() (tensor([1., 1., 1.]), tensor([1.0000, 0.5000, 0.0000]), tensor([0.7000, 0.8000]))
-
__init__
(*, device: Optional[device] = None) None [source]¶ Initialize a metric object and its internal states.
Use
self._add_state()
to initialize state variables of your metric class. The state variables should be eithertorch.Tensor
, a list oftorch.Tensor
, or a dictionary withtorch.Tensor
as values
Methods
__init__
(*[, device])Initialize a metric object and its internal states. compute
()returns: - precision (Tensor): Tensor of precision result. Its shape is (n_thresholds + 1, )
load_state_dict
(state_dict[, strict])Loads metric state variables from state_dict. merge_state
(metrics)Implement this method to update the current metric's state variables to be the merged states of the current metric and input metrics. reset
()Reset the metric state variables to their default value. state_dict
()Save metric state variables in state_dict. to
(device, *args, **kwargs)Move tensors in metric state variables to device. update
(input, target)Update states with the ground truth labels and predictions. Attributes
device
The last input device of Metric.to()
.-