torchtnt.utils.data.MultiIterator¶
-
class
torchtnt.utils.data.
MultiIterator
(individual_dataloaders: Mapping[str, Union[DataLoader, Iterable]], iteration_strategy: DataIterationStrategy)¶ MultiIterator defines the iteration logic to get a batch, given batches from all individual dataloaders. iteration_strategy can include accompanying parameters for a particular iterator, like cycling order for the dataloaders.
Parameters: - individual_dataloaders (Mapping[str, Union[DataLoader, Iterable]]) – A mapping of DataLoaders or Iterables with dataloader name as key and dataloader/iterable object as value.
- iteration_strategy (DataIterationStrategy) – A dataclass indicating how the dataloaders are iterated over.
Note
- TorchData (https://pytorch.org/data/beta/index.html) also has generic multi-data
- sources reading support to achieve the same functionality provided by MultiIterator.
For example, mux, mux_longest, cycle, zip etc. Please refer to the documentation for more details.
-
__init__
(individual_dataloaders: Mapping[str, Union[DataLoader, Iterable]], iteration_strategy: DataIterationStrategy) None ¶
Methods
__init__
(individual_dataloaders, ...)