torchtnt.utils.data.MultiDataLoader¶
-
class
torchtnt.utils.data.
MultiDataLoader
(individual_dataloaders: Dict[str, Union[DataLoader, Iterable]], iteration_strategy: DataIterationStrategy, iterator_cls: Optional[Type[MultiIterator]] = None, ignore_empty_data: bool = False)¶ MultiDataLoader cycles through individual dataloaders passed to it.
-
individual_dataloaders
¶ A dictionary of DataLoaders or Iterables with dataloader name as key
Type: Dict[str, Union[DataLoader, Iterable]]
-
and dataloader/iterable object as value.
-
iteration_strategy
¶ A dataclass indicating how the dataloaders are iterated over.
Type: DataIterationStrategy
-
iterator_cls
¶ A subclass of MultiIterator defining iteration logic. This is the type, not an object instance
Type: MultiIterator, optional
-
ignore_empty_data
¶ skip dataloaders which contain no data. It’s False by default, and an exception is raised.
Type: bool
Note
TorchData also has generic multi-data sources reading support to achieve the same functionality provided by MultiIterator. For example, mux, mux_longest, cycle, zip etc. Please refer to the documentation for more details.
-
__init__
(individual_dataloaders: Dict[str, Union[DataLoader, Iterable]], iteration_strategy: DataIterationStrategy, iterator_cls: Optional[Type[MultiIterator]] = None, ignore_empty_data: bool = False) None ¶
Methods
__init__
(individual_dataloaders, ...[, ...])load_state_dict
(state_dict)Loads aggregated state dict based on individual dataloaders. state_dict
()Return an aggregated state dict based on individual dataloaders. -