Shortcuts

Source code for torchtext.datasets.penntreebank

import os
from functools import partial
from typing import Tuple, Union

# noqa

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
    _wrap_split_argument,
    _create_dataset_directory,
)

URL = {
    "train": "https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.train.txt",
    "test": "https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.test.txt",
    "valid": "https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.valid.txt",
}

MD5 = {
    "train": "f26c4b92c5fdc7b3f8c7cdcb991d8420",
    "valid": "aa0affc06ff7c36e977d7cd49e3839bf",
    "test": "8b80168b89c18661a38ef683c0dc3721",
}

NUM_LINES = {
    "train": 42068,
    "valid": 3370,
    "test": 3761,
}

DATASET_NAME = "PennTreebank"


def _filepath_fn(root, split, _=None):
    return os.path.join(root, os.path.basename(URL[split]))


def _modify_res(t):
    return t.strip()


[docs]@_create_dataset_directory(dataset_name=DATASET_NAME) @_wrap_split_argument(("train", "valid", "test")) def PennTreebank(root, split: Union[Tuple[str], str]): """PennTreebank Dataset .. warning:: using datapipes is still currently subject to a few caveats. if you wish to use this dataset with shuffling, multi-processing, or distributed learning, please see :ref:`this note <datapipes_warnings>` for further instructions. For additional details refer to https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html Number of lines per split: - train: 42068 - valid: 3370 - test: 3761 Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `valid`, `test`) :returns: DataPipe that yields text from the Treebank corpus :rtype: str """ if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data" ) from torchdata.datapipes.iter import FileOpener, GDriveReader, HttpReader, IterableWrapper # noqa url_dp = IterableWrapper([URL[split]]) cache_dp = url_dp.on_disk_cache( filepath_fn=partial(_filepath_fn, root, split), hash_dict={_filepath_fn(root, split): MD5[split]}, hash_type="md5", ) cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True) data_dp = FileOpener(cache_dp, encoding="utf-8") # remove single leading and trailing space from the dataset return data_dp.readlines(return_path=False).map(_modify_res).shuffle().set_shuffle(False).sharding_filter()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources