Source code for torchtext.datasets.cc100
import os.path
from functools import partial
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_create_dataset_directory,
)
URL = "http://data.statmt.org/cc-100/%s.txt.xz"
VALID_CODES = {
"am",
"ar",
"as",
"az",
"be",
"bg",
"bn",
"bn_rom",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"ff",
"fi",
"fr",
"fy",
"ga",
"gd",
"gl",
"gn",
"gu",
"ha",
"he",
"hi",
"hi_rom",
"hr",
"ht",
"hu",
"hy",
"id",
"ig",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ku",
"ky",
"la",
"lg",
"li",
"ln",
"lo",
"lt",
"lv",
"mg",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"my_zaw",
"ne",
"nl",
"no",
"ns",
"om",
"or",
"pa",
"pl",
"ps",
"pt",
"qu",
"rm",
"ro",
"ru",
"sa",
"si",
"sc",
"sd",
"sk",
"sl",
"so",
"sq",
"sr",
"ss",
"su",
"sv",
"sw",
"ta",
"ta_rom",
"te",
"te_rom",
"th",
"tl",
"tn",
"tr",
"ug",
"uk",
"ur",
"ur_rom",
"uz",
"vi",
"wo",
"xh",
"yi",
"yo",
"zh-Hans",
"zh-Hant",
"zu",
}
NUM_LINES = None
MD5 = None
DATASET_NAME = "CC100"
def _filepath_fn(root, url, _=None):
return os.path.join(root, os.path.basename(url))
def _decompressed_filepath_fn(root, x):
return os.path.join(root, os.path.basename(x).rstrip(".xz"))
def _modify_res(language_code, x):
return language_code, x
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
def CC100(root: str, language_code: str = "en"):
"""CC100 Dataset
.. warning::
using datapipes is still currently subject to a few caveats. if you wish
to use this dataset with shuffling, multi-processing, or distributed
learning, please see :ref:`this note <datapipes_warnings>` for further
instructions.
For additional details refer to https://data.statmt.org/cc-100/
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
language_code: the language of the dataset
:returns: DataPipe that yields tuple of language code and text
:rtype: (str, str)
"""
if language_code not in VALID_CODES:
raise ValueError(f"Invalid language code {language_code}")
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
)
from torchdata.datapipes.iter import FileOpener, GDriveReader, HttpReader, IterableWrapper # noqa
url = URL % language_code
url_dp = IterableWrapper([url])
cache_compressed_dp = url_dp.on_disk_cache(filepath_fn=partial(_filepath_fn, root, url))
cache_compressed_dp = HttpReader(cache_compressed_dp)
cache_compressed_dp = cache_compressed_dp.end_caching(mode="wb", same_filepath_fn=True)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_decompressed_filepath_fn, root))
cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b").load_from_xz()
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb")
data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8").readlines(return_path=False)
return data_dp.map(partial(_modify_res, language_code)).shuffle().set_shuffle(False).sharding_filter()