Source code for torchtext.datasets.unsupervised_learning
from torchtext.data.functional import custom_replace
import torch
from torchtext.utils import download_from_url, extract_archive
from torchtext.vocab import build_vocab_from_iterator
from torchtext.data.functional import simple_space_split
import os
_patterns = [(r'<.*>', ''),
(r'&', '&'),
(r'<', '<'),
(r'>', '>'),
(r'<ref[^<]*<\/ref>', ''),
(r'<[^>]*>', ''),
(r'\[http:[^] ]*', '['),
(r'\|thumb', ''),
(r'\|left', ''),
(r'\|right', ''),
(r'\|\d+px', ''),
(r'\[\[image:[^\[\]]*\|', ''),
(r'\[\[category:([^|\]]*)[^]]*\]\]', '[[$1]]'),
(r'\[\[[a-z\-]*:[^\]]*\]\]', ''),
(r'\[\[[^\|\]]*\|', '[['),
(r'\{\{[^\}]*\}\}', ''),
(r'\{[^\}]*\}', ''),
(r'\[', ''),
(r'\]', ''),
(r'&[^;]*;', ' '),
(r'A', 'a'), (r'B', 'b'), (r'C', 'c'),
(r'D', 'd'), (r'E', 'e'), (r'F', 'f'),
(r'G', 'g'), (r'H', 'h'), (r'I', 'i'),
(r'J', 'j'), (r'K', 'k'), (r'L', 'l'),
(r'M', 'm'), (r'N', 'n'), (r'O', 'o'),
(r'P', 'p'), (r'Q', 'q'), (r'R', 'r'),
(r'S', 's'), (r'T', 't'), (r'U', 'u'),
(r'V', 'v'), (r'W', 'w'), (r'X', 'x'),
(r'Y', 'y'), (r'Z', 'z'),
(r'0', ' zero '), (r'1', ' one '), (r'2', ' two '),
(r'3', ' three '), (r'4', ' four '), (r'5', ' five '),
(r'6', ' six '), (r'7', ' seven '), (r'8', ' eight '),
(r'9', ' nine '),
(r'[^a-z\n]+', ' '),
(r'\n ', ''),
(r'\s+', ' '),
(r'\n\s*\n', r'\n')
]
enwik9_norm_transform = custom_replace(_patterns)
def generate_offsets(filename):
offsets = []
with open(filename) as f:
offsets.append(f.tell())
while f.readline():
offsets.append(f.tell())
return offsets
def read_lines_from_iterator(data_path, offsets, begin_line, num_lines):
with open(data_path) as f:
f.seek(offsets[begin_line])
for i in range(num_lines):
yield f.readline()
def preprocess_raw_enwik9(input_filename, output_filename):
with open(input_filename, 'r') as f1:
with open(output_filename, 'w') as f2:
while True:
line = f1.readline()
if not line:
break
line = list(enwik9_norm_transform([line]))[0]
if line != ' ' and line != '':
if line[0] == ' ':
line = line[1:]
f2.writelines(line + '\n')
[docs]class EnWik9(torch.utils.data.Dataset):
r"""Compressed size of first 10^9 bytes of enwiki-20060303-pages-articles.xml.
It's part of Large Text Compression Benchmark project
"""
[docs] def __init__(self, begin_line=0, num_lines=6348957, root='.data'):
"""Initiate EnWik9 dataset.
Arguments:
begin_line: the number of beginning line. Default: 0
num_lines: the number of lines to be loaded. Default: 6348957
root: Directory where the datasets are saved. Default: ".data"
data: a list of label/tokens tuple. tokens are a tensor after
Examples:
>>> from torchtext.datasets import EnWik9
>>> enwik9 = EnWik9(num_lines=20000)
>>> vocab = enwik9.get_vocab()
"""
super(EnWik9, self).__init__()
processed_file = os.path.join(root, 'norm_enwik9')
if not os.path.exists(processed_file):
url = 'http://mattmahoney.net/dc/enwik9.zip'
dataset_zip = download_from_url(url,
path=os.path.join(root, 'enwik9.zip'),
root=root)
extracted_file = extract_archive(dataset_zip)
raw_file = extracted_file[0]
preprocess_raw_enwik9(raw_file, processed_file)
# Meta information
offsets = generate_offsets(processed_file)
read_lines = read_lines_from_iterator(processed_file,
offsets, begin_line, num_lines)
self._data = []
for item in simple_space_split(read_lines):
self._data += item
self._vocab = None
def __getitem__(self, i):
return self._data[i]
def __len__(self):
return len(self._data)
def __iter__(self):
for x in self._data:
yield x
def get_vocab(self):
if self._vocab is None:
self._vocab = build_vocab_from_iterator([self._data])
return self._vocab