Source code for torchtext.datasets.language_modeling
from torchtext import data
import io
[docs]class LanguageModelingDataset(data.Dataset):
"""Defines a dataset for language modeling."""
[docs] def __init__(self, path, text_field, newline_eos=True,
encoding='utf-8', **kwargs):
"""Create a LanguageModelingDataset given a path and a field.
Arguments:
path: Path to the data file.
text_field: The field that will be used for text data.
newline_eos: Whether to add an <eos> token for every newline in the
data file. Default: True.
Remaining keyword arguments: Passed to the constructor of
data.Dataset.
"""
fields = [('text', text_field)]
text = []
with io.open(path, encoding=encoding) as f:
for line in f:
text += text_field.preprocess(line)
if newline_eos:
text.append(u'<eos>')
examples = [data.Example.fromlist([text], fields)]
super(LanguageModelingDataset, self).__init__(
examples, fields, **kwargs)
[docs]class WikiText2(LanguageModelingDataset):
urls = ['https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip']
name = 'wikitext-2'
dirname = 'wikitext-2'
[docs] @classmethod
def splits(cls, text_field, root='.data', train='wiki.train.tokens',
validation='wiki.valid.tokens', test='wiki.test.tokens',
**kwargs):
"""Create dataset objects for splits of the WikiText-2 dataset.
This is the most flexible way to use the dataset.
Arguments:
text_field: The field that will be used for text data.
root: The root directory that the dataset's zip archive will be
expanded into; therefore the directory in whose wikitext-2
subdirectory the data files will be stored.
train: The filename of the train data. Default: 'wiki.train.tokens'.
validation: The filename of the validation data, or None to not
load the validation set. Default: 'wiki.valid.tokens'.
test: The filename of the test data, or None to not load the test
set. Default: 'wiki.test.tokens'.
"""
return super(WikiText2, cls).splits(
root=root, train=train, validation=validation, test=test,
text_field=text_field, **kwargs)
[docs] @classmethod
def iters(cls, batch_size=32, bptt_len=35, device=0, root='.data',
vectors=None, **kwargs):
"""Create iterator objects for splits of the WikiText-2 dataset.
This is the simplest way to use the dataset, and assumes common
defaults for field, vocabulary, and iterator parameters.
Arguments:
batch_size: Batch size.
bptt_len: Length of sequences for backpropagation through time.
device: Device to create batches on. Use -1 for CPU and None for
the currently active GPU device.
root: The root directory that the dataset's zip archive will be
expanded into; therefore the directory in whose wikitext-2
subdirectory the data files will be stored.
wv_dir, wv_type, wv_dim: Passed to the Vocab constructor for the
text field. The word vectors are accessible as
train.dataset.fields['text'].vocab.vectors.
Remaining keyword arguments: Passed to the splits method.
"""
TEXT = data.Field()
train, val, test = cls.splits(TEXT, root=root, **kwargs)
TEXT.build_vocab(train, vectors=vectors)
return data.BPTTIterator.splits(
(train, val, test), batch_size=batch_size, bptt_len=bptt_len,
device=device)
[docs]class WikiText103(LanguageModelingDataset):
urls = ['https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip']
name = 'wikitext-103'
dirname = 'wikitext-103'
[docs] @classmethod
def splits(cls, text_field, root='.data', train='wiki.train.tokens',
validation='wiki.valid.tokens', test='wiki.test.tokens',
**kwargs):
"""Create dataset objects for splits of the WikiText-103 dataset.
This is the most flexible way to use the dataset.
Arguments:
text_field: The field that will be used for text data.
root: The root directory that the dataset's zip archive will be
expanded into; therefore the directory in whose wikitext-103
subdirectory the data files will be stored.
train: The filename of the train data. Default: 'wiki.train.tokens'.
validation: The filename of the validation data, or None to not
load the validation set. Default: 'wiki.valid.tokens'.
test: The filename of the test data, or None to not load the test
set. Default: 'wiki.test.tokens'.
"""
return super(WikiText103, cls).splits(
root=root, train=train, validation=validation, test=test,
text_field=text_field, **kwargs)
[docs] @classmethod
def iters(cls, batch_size=32, bptt_len=35, device=0, root='.data',
vectors=None, **kwargs):
"""Create iterator objects for splits of the WikiText-103 dataset.
This is the simplest way to use the dataset, and assumes common
defaults for field, vocabulary, and iterator parameters.
Arguments:
batch_size: Batch size.
bptt_len: Length of sequences for backpropagation through time.
device: Device to create batches on. Use -1 for CPU and None for
the currently active GPU device.
root: The root directory that the dataset's zip archive will be
expanded into; therefore the directory in whose wikitext-2
subdirectory the data files will be stored.
wv_dir, wv_type, wv_dim: Passed to the Vocab constructor for the
text field. The word vectors are accessible as
train.dataset.fields['text'].vocab.vectors.
Remaining keyword arguments: Passed to the splits method.
"""
TEXT = data.Field()
train, val, test = cls.splits(TEXT, root=root, **kwargs)
TEXT.build_vocab(train, vectors=vectors)
return data.BPTTIterator.splits(
(train, val, test), batch_size=batch_size, bptt_len=bptt_len,
device=device)
[docs]class PennTreebank(LanguageModelingDataset):
"""The Penn Treebank dataset.
A relatively small dataset originally created for POS tagging.
References
----------
Marcus, Mitchell P., Marcinkiewicz, Mary Ann & Santorini, Beatrice (1993).
Building a Large Annotated Corpus of English: The Penn Treebank
"""
urls = ['https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.train.txt',
'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.valid.txt',
'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.test.txt']
name = 'penn-treebank'
dirname = ''
[docs] @classmethod
def splits(cls, text_field, root='.data', train='ptb.train.txt',
validation='ptb.valid.txt', test='ptb.test.txt',
**kwargs):
"""Create dataset objects for splits of the Penn Treebank dataset.
Arguments:
text_field: The field that will be used for text data.
root: The root directory where the data files will be stored.
train: The filename of the train data. Default: 'ptb.train.txt'.
validation: The filename of the validation data, or None to not
load the validation set. Default: 'ptb.valid.txt'.
test: The filename of the test data, or None to not load the test
set. Default: 'ptb.test.txt'.
"""
return super(PennTreebank, cls).splits(
root=root, train=train, validation=validation, test=test,
text_field=text_field, **kwargs)
[docs] @classmethod
def iters(cls, batch_size=32, bptt_len=35, device=0, root='.data',
vectors=None, **kwargs):
"""Create iterator objects for splits of the Penn Treebank dataset.
This is the simplest way to use the dataset, and assumes common
defaults for field, vocabulary, and iterator parameters.
Arguments:
batch_size: Batch size.
bptt_len: Length of sequences for backpropagation through time.
device: Device to create batches on. Use -1 for CPU and None for
the currently active GPU device.
root: The root directory where the data files will be stored.
wv_dir, wv_type, wv_dim: Passed to the Vocab constructor for the
text field. The word vectors are accessible as
train.dataset.fields['text'].vocab.vectors.
Remaining keyword arguments: Passed to the splits method.
"""
TEXT = data.Field()
train, val, test = cls.splits(TEXT, root=root, **kwargs)
TEXT.build_vocab(train, vectors=vectors)
return data.BPTTIterator.splits(
(train, val, test), batch_size=batch_size, bptt_len=bptt_len,
device=device)