tensordict.nn.EnsembleModule¶
- class tensordict.nn.EnsembleModule(*args, **kwargs)¶
Module that wraps a module and repeats it to form an ensemble.
- Parameters:
module (nn.Module) – The nn.module to duplicate and wrap.
num_copies (int) – The number of copies of module to make.
parameter_init_function (Callable) – A function that takes a module copy and initializes its parameters.
expand_input (bool) – Whether to expand the input TensorDict to match the number of copies. This should be True unless you are chaining ensemble modules together, e.g. EnsembleModule(cnn) -> EnsembleModule(mlp). If False, EnsembleModule(mlp) will expected the previous module(s) to have already expanded the input.
Examples
>>> import torch >>> from torch import nn >>> from tensordict.nn import TensorDictModule, EnsembleModule >>> from tensordict import TensorDict >>> net = nn.Sequential(nn.Linear(4, 32), nn.ReLU(), nn.Linear(32, 2)) >>> mod = TensorDictModule(net, in_keys=['a'], out_keys=['b']) >>> ensemble = EnsembleModule(mod, num_copies=3) >>> data = TensorDict({'a': torch.randn(10, 4)}, batch_size=[10]) >>> ensemble(data) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 10, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3, 10, 2]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 10]), device=None, is_shared=False)
To stack EnsembleModules together, we should be mindful of turning off expand_input from the second module and on.
Examples
>>> import torch >>> from tensordict.nn import TensorDictModule, TensorDictSequential, EnsembleModule >>> from tensordict import TensorDict >>> module = TensorDictModule(torch.nn.Linear(2,3), in_keys=['bork'], out_keys=['dork']) >>> next_module = TensorDictModule(torch.nn.Linear(3,1), in_keys=['dork'], out_keys=['spork']) >>> e0 = EnsembleModule(module, num_copies=4, expand_input=True) >>> e1 = EnsembleModule(next_module, num_copies=4, expand_input=False) >>> seq = TensorDictSequential(e0, e1) >>> data = TensorDict({'bork': torch.randn(5,2)}, batch_size=[5]) >>> seq(data) TensorDict( fields={ bork: Tensor(shape=torch.Size([4, 5, 2]), device=cpu, dtype=torch.float32, is_shared=False), dork: Tensor(shape=torch.Size([4, 5, 3]), device=cpu, dtype=torch.float32, is_shared=False), spork: Tensor(shape=torch.Size([4, 5, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([4, 5]), device=None, is_shared=False)