Note
Go to the end to download the full example code.
Manipulating the keys of a TensorDict¶
Author: Tom Begley
In this tutorial you will learn how to work with and manipulate the keys in a
TensorDict
, including getting and setting keys, iterating over keys, manipulating
nested values, and flattening the keys.
Setting and getting keys¶
We can set and get keys using the same syntax as a Python dict
import torch
from tensordict.tensordict import TensorDict
tensordict = TensorDict()
# set a key
a = torch.rand(10)
tensordict["a"] = a
# retrieve the value stored under "a"
assert tensordict["a"] is a
Note
Unlike a Python dict
, all keys in the TensorDict
must be strings. However
as we will see, it is also possible to use tuples of strings to manipulate nested
values.
We can also use the methods .get()
and .set
to accomplish the same thing.
tensordict = TensorDict()
# set a key
a = torch.rand(10)
tensordict.set("a", a)
# retrieve the value stored under "a"
assert tensordict.get("a") is a
Like dict
, we can provide a default value to get
that should be returned in
case the requested key is not found.
Similarly, like dict
, we can use the TensorDict.setdefault()
to get the
value of a particular key, returning a default value if that key is not found, and
also setting that value in the TensorDict
.
Deleting keys is also achieve in the same way as a Python dict
, using the del
statement and the chosen key. Equivalently we could use the
TensorDict.del_
method.
del tensordict["banana"]
Furthermore, when setting keys with .set()
we can use the keyword argument
inplace=True
to make an inplace update, or equivalently use the .set_()
method.
tensordict.set("a", torch.zeros(10), inplace=True)
# all the entries of the "a" tensor are now zero
assert (tensordict.get("a") == 0).all()
# but it's still the same tensor as before
assert tensordict.get("a") is a
# we can achieve the same with set_
tensordict.set_("a", torch.ones(10))
assert (tensordict.get("a") == 1).all()
assert tensordict.get("a") is a
Renaming keys¶
To rename a key, simply use the
TensorDict.rename_key_
method. The value
stored under the original key will remain in the TensorDict
, but the key
will be changed to the specified new key.
tensordict.rename_key_("a", "b")
assert tensordict.get("b") is a
print(tensordict)
TensorDict(
fields={
b: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
Updating multiple values¶
The TensorDict.update
method can be used to
update a TensorDict`
with another one or with a dict
. Keys that already
exist are overwritten, and keys that do not already exist are created.
tensordict = TensorDict({"a": torch.rand(10), "b": torch.rand(10)}, [10])
tensordict.update(TensorDict({"a": torch.zeros(10), "c": torch.zeros(10)}, [10]))
assert (tensordict["a"] == 0).all()
assert (tensordict["b"] != 0).all()
assert (tensordict["c"] == 0).all()
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
c: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([10]),
device=None,
is_shared=False)
Nested values¶
The values of a TensorDict
can themselves be a TensorDict
. We can add nested
values during instantiation, either by adding TensorDict
directly, or using nested
dictionaries
# creating nested values with a nested dict
nested_tensordict = TensorDict(
{"a": torch.rand(2, 3), "double_nested": {"a": torch.rand(2, 3)}}, [2, 3]
)
# creating nested values with a TensorDict
tensordict = TensorDict({"a": torch.rand(2), "nested": nested_tensordict}, [2])
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
To access these nested values, we can use tuples of strings. For example
double_nested_a = tensordict["nested", "double_nested", "a"]
nested_a = tensordict.get(("nested", "a"))
Similarly we can set nested values using tuples of strings
tensordict["nested", "double_nested", "b"] = torch.rand(2, 3)
tensordict.set(("nested", "b"), torch.rand(2, 3))
print(tensordict)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
Iterating over a TensorDict’s contents¶
We can iterate over the keys of a TensorDict
using the .keys()
method.
a
nested
By default this will iterate only over the top-level keys in the TensorDict
,
however it is possible to recursively iterate over all of the keys in the
TensorDict
with the keyword argument include_nested=True
. This will iterate
recursively over all keys in any nested TensorDicts, returning nested keys as tuples
of strings.
a
('nested', 'a')
('nested', 'double_nested', 'a')
('nested', 'double_nested', 'b')
('nested', 'double_nested')
('nested', 'b')
nested
In case you want to only iterate over keys corresponding to Tensor
values, you can
additionally specify leaves_only=True
.
a
('nested', 'a')
('nested', 'double_nested', 'a')
('nested', 'double_nested', 'b')
('nested', 'b')
Much like dict
, there are also .values
and .items
methods which accept the
same keyword arguments.
a is a Tensor
nested is a TensorDict
('nested', 'a') is a Tensor
('nested', 'double_nested') is a TensorDict
('nested', 'double_nested', 'a') is a Tensor
('nested', 'double_nested', 'b') is a Tensor
('nested', 'b') is a Tensor
Checking for existence of a key¶
To check if a key exists in a TensorDict
, use the in
operator in conjunction
with .keys()
.
Note
Performing key in tensordict.keys()
does efficient dict
lookups of keys
(recursively at each level in the nested case), and so performance is not
negatively impacted when there is a large number of keys in the TensorDict
.
assert "a" in tensordict.keys()
# to check for nested keys, set include_nested=True
assert ("nested", "a") in tensordict.keys(include_nested=True)
assert ("nested", "banana") not in tensordict.keys(include_nested=True)
Flattening and unflattening nested keys¶
We can flatten a TensorDict
with nested values using the .flatten_keys()
method.
print(tensordict, end="\n\n")
print(tensordict.flatten_keys(separator="."))
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
Given a TensorDict
that has been flattened, it is possible to unflatten it again
with the .unflatten_keys()
method.
flattened_tensordict = tensordict.flatten_keys(separator=".")
print(flattened_tensordict, end="\n\n")
print(flattened_tensordict.unflatten_keys(separator="."))
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
nested.double_nested.b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
double_nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False),
b: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
This can be particularly useful when manipulating the parameters of a
torch.nn.Module
, as we can end up with a TensorDict
whose
structure mimics the module structure.
import torch.nn as nn
module = nn.Sequential(
nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 10)),
nn.Linear(10, 1),
)
params = TensorDict(dict(module.named_parameters()), []).unflatten_keys()
print(params)
TensorDict(
fields={
0: TensorDict(
fields={
0: TensorDict(
fields={
bias: Parameter(shape=torch.Size([50]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([50, 100]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False),
1: TensorDict(
fields={
bias: Parameter(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([10, 50]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False),
1: TensorDict(
fields={
bias: Parameter(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
weight: Parameter(shape=torch.Size([1, 10]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
Selecting and excluding keys¶
We can obtain a new TensorDict
with a subset of the keys by using
TensorDict.select
, which returns a new
TensorDict
containing only the specified keys, or
:meth: TensorDict.exclude <tensordict.TensorDict.exclude>, which returns a new
TensorDict
with the specified keys omitted.
print("Select:")
print(tensordict.select("a", ("nested", "a")), end="\n\n")
print("Exclude:")
print(tensordict.exclude(("nested", "b"), ("nested", "double_nested")))
Select:
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
Exclude:
TensorDict(
fields={
a: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
nested: TensorDict(
fields={
a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([2, 3]),
device=None,
is_shared=False)},
batch_size=torch.Size([2]),
device=None,
is_shared=False)
Total running time of the script: (0 minutes 0.009 seconds)