make_tensordict¶
- class tensordict.make_tensordict(input_dict: Optional[dict[str, torch.Tensor]] = None, batch_size: Optional[Union[Sequence[int], Size, int]] = None, device: Optional[Union[device, str, int]] = None, **kwargs: Tensor)¶
Returns a TensorDict created from the keyword arguments or an input dictionary.
If
batch_size
is not specified, returns the maximum batch size possible.This function works on nested dictionaries too, or can be used to determine the batch-size of a nested tensordict.
- Parameters:
input_dict (dictionary, optional) – a dictionary to use as a data source (nested keys compatible).
**kwargs (TensorDict or torch.Tensor) – keyword arguments as data source (incompatible with nested keys).
batch_size (iterable of int, optional) – a batch size for the tensordict.
device (torch.device or compatible type, optional) – a device for the TensorDict.
Examples
>>> input_dict = {"a": torch.randn(3, 4), "b": torch.randn(3)} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # alternatively >>> td = make_tensordict(**input_dict) >>> # nested dict: the nested TensorDict can have a different batch-size >>> # as long as its leading dims match. >>> input_dict = {"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # we can also use this to work out the batch sie of a tensordict >>> input_td = TensorDict({"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}}, []) >>> print(make_tensordict(input_td)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)