Shortcuts

from_pytree

class tensordict.from_pytree(pytree, *, batch_size: Optional[Size] = None, auto_batch_size: bool = False, batch_dims: Optional[int] = None)

Converts a pytree to a TensorDict instance.

This method is designed to keep the pytree nested structure as much as possible.

Additional non-tensor keys are added to keep track of each level’s identity, providing a built-in pytree-to-tensordict bijective transform API.

Accepted classes currently include lists, tuples, named tuples and dict.

Note

For dictionaries, non-NestedKey keys are registered separately as NonTensorData instances.

Note

Tensor-castable types (such as int, float or np.ndarray) will be converted to torch.Tensor instances. Note that this transformation is surjective: transforming back the tensordict to a pytree will not recover the original types.

Examples

>>> # Create a pytree with tensor leaves, and one "weird"-looking dict key
>>> class WeirdLookingClass:
...     pass
...
>>> weird_key = WeirdLookingClass()
>>> # Make a pytree with tuple, lists, dict and namedtuple
>>> pytree = (
...     [torch.randint(10, (3,)), torch.zeros(2)],
...     {
...         "tensor": torch.randn(
...             2,
...         ),
...         "td": TensorDict({"one": 1}),
...         weird_key: torch.randint(10, (2,)),
...         "list": [1, 2, 3],
...     },
...     {"named_tuple": TensorDict({"two": torch.ones(1) * 2}).to_namedtuple()},
... )
>>> # Build a TensorDict from that pytree
>>> td = from_pytree(pytree)
>>> # Recover the pytree
>>> pytree_recon = td.to_pytree()
>>> # Check that the leaves match
>>> def check(v1, v2):
>>>     assert (v1 == v2).all()
>>>
>>> torch.utils._pytree.tree_map(check, pytree, pytree_recon)
>>> assert weird_key in pytree_recon[1]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources