from_dict¶
- class tensordict.from_dict(input_dict, batch_size=None, device=None, batch_dims=None, names=None)¶
Returns a TensorDict created from a dictionary or another
TensorDict
.If
batch_size
is not specified, returns the maximum batch size possible.This function works on nested dictionaries too, or can be used to determine the batch-size of a nested tensordict.
- Parameters:
input_dict (dictionary, optional) – a dictionary to use as a data source (nested keys compatible).
batch_size (iterable of int, optional) – a batch size for the tensordict.
device (torch.device or compatible type, optional) – a device for the TensorDict.
batch_dims (int, optional) – the
batch_dims
(ie number of leading dimensions to be considered forbatch_size
). Exclusinve withbatch_size
. Note that this is the __maximum__ number of batch dims of the tensordict, a smaller number is tolerated.names (list of str, optional) – the dimension names of the tensordict.
Examples
>>> input_dict = {"a": torch.randn(3, 4), "b": torch.randn(3)} >>> print(from_dict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # nested dict: the nested TensorDict can have a different batch-size >>> # as long as its leading dims match. >>> input_dict = {"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}} >>> print(from_dict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # we can also use this to work out the batch sie of a tensordict >>> input_td = TensorDict({"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}}, []) >>> print( from_dict(input_td)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)