Shortcuts

dense_stack_tds

class tensordict.dense_stack_tds(td_list: Union[Sequence[TensorDictBase], LazyStackedTensorDict], dim: Optional[int] = None)

Densely stack a list of TensorDictBase objects (or a LazyStackedTensorDict) given that they have the same structure.

This function is called with a list of TensorDictBase (either passed directly or obtrained from a LazyStackedTensorDict). Instead of calling torch.stack(td_list), which would return a LazyStackedTensorDict, this function expands the first element of the input list and stacks the input list onto that element. This works only when all the elements of the input list have the same structure. The TensorDictBase returned will have the same type of the elements of the input list.

This function is useful when some of the TensorDictBase objects that need to be stacked are LazyStackedTensorDict or have LazyStackedTensorDict among entries (or nested entries). In those cases, calling torch.stack(td_list).to_tensordict() is infeasible. Thus, this function provides an alternative for densely stacking the list provided.

Parameters:
  • td_list (List of TensorDictBase or LazyStackedTensorDict) – the tds to stack.

  • dim (int, optional) – the dimension to stack them. If td_list is a LazyStackedTensorDict, it will be retrieved automatically.

Examples

>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict import dense_stack_tds
>>> from tensordict.tensordict import assert_allclose_td
>>> td0 = TensorDict({"a": torch.zeros(3)},[])
>>> td1 = TensorDict({"a": torch.zeros(4), "b": torch.zeros(2)},[])
>>> td_lazy = torch.stack([td0, td1], dim=0)
>>> td_container = TensorDict({"lazy": td_lazy}, [])
>>> td_container_clone = td_container.clone()
>>> td_stack = torch.stack([td_container, td_container_clone], dim=0)
>>> td_stack
LazyStackedTensorDict(
    fields={
        lazy: LazyStackedTensorDict(
            fields={
                a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)},
            exclusive_fields={
            },
            batch_size=torch.Size([2, 2]),
            device=None,
            is_shared=False,
            stack_dim=0)},
    exclusive_fields={
    },
    batch_size=torch.Size([2]),
    device=None,
    is_shared=False,
    stack_dim=0)
>>> td_stack = dense_stack_tds(td_stack) # Automatically use the LazyStackedTensorDict stack_dim
TensorDict(
    fields={
        lazy: LazyStackedTensorDict(
            fields={
                a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)},
            exclusive_fields={
                1 ->
                    b: Tensor(shape=torch.Size([2, 2]), device=cpu, dtype=torch.float32, is_shared=False)},
            batch_size=torch.Size([2, 2]),
            device=None,
            is_shared=False,
            stack_dim=1)},
    batch_size=torch.Size([2]),
    device=None,
    is_shared=False)
# Note that
# (1) td_stack is now a TensorDict
# (2) this has pushed the stack_dim of "lazy" (0 -> 1)
# (3) this has revealed the exclusive keys.
>>> assert_allclose_td(td_stack, dense_stack_tds([td_container, td_container_clone], dim=0))
# This shows it is the same to pass a list or a LazyStackedTensorDict

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources