class ignite.handlers.param_scheduler.CosineAnnealingScheduler(optimizer, param_name, start_value, end_value, cycle_size, cycle_mult=1.0, start_value_mult=1.0, end_value_mult=1.0, save_history=False, param_group_index=None)[source]#

Anneals ‘start_value’ to ‘end_value’ over each cycle.

The annealing takes the form of the first half of a cosine wave (as suggested in [Smith17]).

  • optimizer (torch.optim.optimizer.Optimizer) – torch optimizer or any object with attribute param_groups as a sequence.

  • param_name (str) – name of optimizer’s parameter to update.

  • start_value (float) – value at start of cycle.

  • end_value (float) – value at the end of the cycle.

  • cycle_size (int) – length of cycle.

  • cycle_mult (float) – ratio by which to change the cycle_size at the end of each cycle (default=1).

  • start_value_mult (float) – ratio by which to change the start value at the end of each cycle (default=1.0).

  • end_value_mult (float) – ratio by which to change the end value at the end of each cycle (default=1.0).

  • save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).

  • param_group_index (Optional[int]) – optimizer’s parameters group to use.


If the scheduler is bound to an ‘ITERATION_*’ event, ‘cycle_size’ should usually be the number of batches in an epoch.


from collections import OrderedDict

import torch
from torch import nn, optim

from ignite.engine import *
from ignite.handlers import *
from ignite.metrics import *
from ignite.utils import *
from ignite.contrib.metrics.regression import *
from ignite.contrib.metrics import *

# create default evaluator for doctests

def eval_step(engine, batch):
    return batch

default_evaluator = Engine(eval_step)

# create default optimizer for doctests

param_tensor = torch.zeros([1], requires_grad=True)
default_optimizer = torch.optim.SGD([param_tensor], lr=0.1)

# create default trainer for doctests
# as handlers could be attached to the trainer,
# each test must define his own trainer using `.. testsetup:`

def get_default_trainer():

    def train_step(engine, batch):
        return batch

    return Engine(train_step)

# create default model for doctests

default_model = nn.Sequential(OrderedDict([
    ('base', nn.Linear(4, 2)),
    ('fc', nn.Linear(2, 1))

default_trainer = get_default_trainer()

# CosineAnnealing increases the learning rate from 0.0 to 1.0
# over a cycle of 4 iterations
scheduler = CosineAnnealingScheduler(default_optimizer, "lr", 0.0, 1.0, 4)

default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

def print_lr():
    print(default_optimizer.param_groups[0]["lr"])[0] * 9, max_epochs=1)
default_trainer = get_default_trainer()

optimizer = torch.optim.SGD(
        {"params": default_model.base.parameters(), "lr": 0.001},
        {"params": default_model.fc.parameters(), "lr": 0.01},

# CosineAnnealing increases the learning rate from 0.0 to 1.0
# over a cycle of 4 iterations
scheduler_1 = CosineAnnealingScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0)

# CosineAnnealing increases the learning rate from 0.0 to 0.1
# over a cycle of 4 iterations
scheduler_2 = CosineAnnealingScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1)

default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_1)
default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_2)

def print_lr():
    print(optimizer.param_groups[0]["lr (base)"],
          optimizer.param_groups[1]["lr (fc)"])[0] * 9, max_epochs=1)
0.0 0.0
0.1464... 0.01464...
0.4999... 0.04999...
0.8535... 0.08535...

Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017

New in version 0.4.5.



Method to get current optimizer's parameter value


Method to get current optimizer’s parameter value

Return type