CosineAnnealingScheduler#
- class ignite.handlers.param_scheduler.CosineAnnealingScheduler(optimizer, param_name, start_value, end_value, cycle_size, cycle_mult=1.0, start_value_mult=1.0, end_value_mult=1.0, warmup_duration=0, save_history=False, param_group_index=None)[source]#
Anneals ‘start_value’ to ‘end_value’ over each cycle.
The annealing takes the form of the first half of a cosine wave (as suggested in [Smith17]).
- Parameters
optimizer (Optimizer) – torch optimizer or any object with attribute
param_groups
as a sequence.param_name (str) – name of optimizer’s parameter to update.
start_value (float) – value at start of cycle.
end_value (float) – value at the end of the cycle.
cycle_size (int) – length of cycle.
cycle_mult (float) – ratio by which to change the cycle_size at the end of each cycle (default=1).
start_value_mult (float) – ratio by which to change the start value at the end of each cycle (default=1.0).
end_value_mult (float) – ratio by which to change the end value at the end of each cycle (default=1.0).
warmup_duration (int) – duration of warm-up to be applied before each cycle. Through this warm-up, the parameter starts from the last cycle’s end value and linearly goes to next cycle’s start value. Default is no cyclic warm-up.
save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).
param_group_index (Optional[int]) – optimizer’s parameters group to use.
Note
If the scheduler is bound to an ‘ITERATION_*’ event, ‘cycle_size’ should usually be the number of batches in an epoch.
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.utils import * from ignite.contrib.metrics.regression import * from ignite.contrib.metrics import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
default_trainer = get_default_trainer() # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler = CosineAnnealingScheduler(default_optimizer, "lr", 0.0, 1.0, 4) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 9, max_epochs=1)
0.0 0.1464... 0.4999... 0.8535... ...
default_trainer = get_default_trainer() optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.001}, {"params": default_model.fc.parameters(), "lr": 0.01}, ] ) # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler_1 = CosineAnnealingScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0) # CosineAnnealing increases the learning rate from 0.0 to 0.1 # over a cycle of 4 iterations scheduler_2 = CosineAnnealingScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_2) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr (base)"], optimizer.param_groups[1]["lr (fc)"]) default_trainer.run([0] * 9, max_epochs=1)
0.0 0.0 0.1464... 0.01464... 0.4999... 0.04999... 0.8535... 0.08535... ...
- Smith17
Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017
New in version 0.4.5.
Changed in version 0.4.13: Added cyclic warm-up to the scheduler using
warmup_duration
.Methods
Method to get current optimizer's parameter value