ConcatScheduler#
- class ignite.handlers.param_scheduler.ConcatScheduler(schedulers, durations, save_history=False)[source]#
Concat a list of parameter schedulers.
The ConcatScheduler goes through a list of schedulers given by schedulers. Duration of each scheduler is defined by durations list of integers.
- Parameters
schedulers (List[ParamScheduler]) – list of parameter schedulers.
durations (List[int]) – list of number of events that lasts a parameter scheduler from schedulers.
save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
default_trainer = get_default_trainer() scheduler_1 = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 8) scheduler_2 = CosineAnnealingScheduler(default_optimizer, "lr", 1.0, 0.2, 4) # Sets the Learning rate linearly from 0.0 to 1.0 over 4 iterations. Then # starts an annealing schedule from 1.0 to 0.2 over the next 4 iterations. # The annealing cycles are repeated indefinitely. combined_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[4, ]) default_trainer.add_event_handler(Events.ITERATION_STARTED, combined_scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 8, max_epochs=1)
0.0 0.25 0.5 0.75 1.0 0.8828... 0.6000... 0.3171...
New in version 0.4.5.
Methods
Method to get current parameter values
Copies parameters from
state_dict
into this ConcatScheduler.Method to simulate scheduled values during num_events events.
Returns a dictionary containing a whole state of ConcatScheduler.
- load_state_dict(state_dict)[source]#
Copies parameters from
state_dict
into this ConcatScheduler.- Parameters
state_dict (Mapping) – a dict containing parameters.
- Return type
None
- classmethod simulate_values(num_events, schedulers, durations, param_names=None)[source]#
Method to simulate scheduled values during num_events events.
- Parameters
num_events (int) – number of events during the simulation.
schedulers (List[ParamScheduler]) – list of parameter schedulers.
durations (List[int]) – list of number of events that lasts a parameter scheduler from schedulers.
param_names (Optional[Union[List[str], Tuple[str]]]) – parameter name or list of parameter names to simulate values. By default, the first scheduler’s parameter name is taken.
- Returns
list of [event_index, value_0, value_1, …], where values correspond to param_names.
- Return type