import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)
# load pretrained models, using ResNeSt-50 as an example
model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

Here’s a sample execution.

# Download an example image from the pytorch website
import urllib
url, filename = ("", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image =
preprocess = transforms.Compose([
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch ='cuda')'cuda')

with torch.no_grad():
    output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
print(torch.nn.functional.softmax(output[0], dim=0))

Model Description

ResNeSt models are from the ResNeSt: Split-Attention Networks paper.

While image classification models have recently continued to advance, most downstream applications such as object detection and semantic segmentation still employ ResNet variants as the backbone network due to their simple and modular structure. We present a simple and modular Split-Attention block that enables attention across feature-map groups. By stacking these Split-Attention blocks ResNet-style, we obtain a new ResNet variant which we call ResNeSt. Our network preserves the overall ResNet structure to be used in downstream tasks straightforwardly without introducing additional computational costs. ResNeSt models outperform other networks with similar model complexities, and also help downstream tasks including object detection, instance segmentation and semantic segmentation.

  crop size PyTorch
ResNeSt-50 224 81.03
ResNeSt-101 256 82.83
ResNeSt-200 320 83.84
ResNeSt-269 416 84.54