[docs]classQConfig(namedtuple('QConfig',['activation','weight'])):""" Describes how to quantize a layer or a part of the network by providing settings (observer classes) for activations and weights respectively. Note that QConfig needs to contain observer **classes** (like MinMaxObserver) or a callable that returns instances on invocation, not the concrete observer instances themselves. Quantization preparation function will instantiate observers multiple times for each of the layers. Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` method (that behaves like functools.partial):: my_qconfig = QConfig( activation=MinMaxObserver.with_args(dtype=torch.qint8), weight=default_observer.with_args(dtype=torch.qint8)) """def__new__(cls,activation,weight):# catch common mistakesifisinstance(activation,nn.Module)orisinstance(weight,nn.Module):raiseValueError("QConfig received observer instance, please pass observer class instead. "+"Use MyObserver.with_args(x=1) to override arguments to constructor if needed")returnsuper(QConfig,cls).__new__(cls,activation,weight)
classQConfigDynamic(namedtuple('QConfigDynamic',['activation','weight'])):""" Describes how to dynamically quantize a layer or a part of the network by providing settings (observer classes) for weights. It's like QConfig, but for dynamic quantization. Note that QConfigDynamic needs to contain observer **classes** (like MinMaxObserver) or a callable that returns instances on invocation, not the concrete observer instances themselves. Quantization function will instantiate observers multiple times for each of the layers. Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` method (that behaves like functools.partial):: my_qconfig = QConfigDynamic(weight=default_observer.with_args(dtype=torch.qint8)) """def__new__(cls,activation=torch.nn.Identity,weight=torch.nn.Identity):# catch common mistakesifisinstance(weight,nn.Module):raiseValueError("QConfigDynamic received observer instance, please pass observer class instead. "+"Use MyObserver.with_args(x=1) to override arguments to constructor if needed")warnings.warn("QConfigDynamic is going to be deprecated in PyTorch 1.12, please use QConfig instead")returnsuper(QConfigDynamic,cls).__new__(cls,activation,weight)default_qconfig=QConfig(activation=default_observer,weight=default_weight_observer)"""Default qconfig configuration."""default_debug_qconfig=QConfig(weight=default_weight_observer,activation=default_debug_observer)"""Default qconfig configuration for debugging."""default_per_channel_qconfig=QConfig(activation=default_observer,weight=default_per_channel_weight_observer)"""Default qconfig configuration for per channel weight quantization."""default_dynamic_qconfig=QConfig(activation=default_dynamic_quant_observer,weight=default_weight_observer)"""Default dynamic qconfig."""float16_dynamic_qconfig=QConfig(activation=PlaceholderObserver.with_args(dtype=torch.float32),weight=PlaceholderObserver.with_args(dtype=torch.float16))"""Dynamic qconfig with weights quantized to `torch.float16`."""float16_static_qconfig=QConfig(activation=PlaceholderObserver.with_args(dtype=torch.float16),weight=PlaceholderObserver.with_args(dtype=torch.float16))"""Dynamic qconfig with both activations and weights quantized to `torch.float16`."""per_channel_dynamic_qconfig=QConfig(activation=default_dynamic_quant_observer,weight=default_per_channel_weight_observer)"""Dynamic qconfig with weights quantized per channel."""float_qparams_weight_only_qconfig=QConfig(activation=default_placeholder_observer,weight=default_float_qparams_observer)"""Dynamic qconfig with weights quantized with a floating point zero_point."""float_qparams_weight_only_qconfig_4bit=QConfig(activation=default_placeholder_observer,weight=default_float_qparams_observer_4bit)default_qat_qconfig=QConfig(activation=default_fake_quant,weight=default_weight_fake_quant)"""Default qconfig for QAT."""default_dynamic_qat_qconfig=QConfig(activation=default_dynamic_fake_quant,weight=default_weight_fake_quant)"""Default qconfig for dynamic QAT."""default_weight_only_qconfig=QConfig(activation=torch.nn.Identity,weight=default_weight_fake_quant)"""Default qconfig for quantizing weights only."""default_activation_only_qconfig=QConfig(activation=default_fake_quant,weight=torch.nn.Identity)"""Default qconfig for quantizing activations only."""# QAT config that uses a fused observer + fake quant modules for optimized training performance.# to modify the activation/weight observers, the default entries in fake_quantize.py can be modified.default_qat_qconfig_v2=QConfig(activation=default_fused_act_fake_quant,weight=default_fused_wt_fake_quant)"""Fused version of `default_qat_config`, has performance benefits."""default_reuse_input_qconfig=QConfig(activation=default_reuse_input_observer,weight=NoopObserver)"""Default qconfig for operators that reuse the observers from input Tensor, e.g. reshape"""defget_default_qconfig(backend='fbgemm'):""" Returns the default PTQ qconfig for the specified backend. Args: * `backend`: a string representing the target backend. Currently supports `fbgemm` and `qnnpack`. Return: qconfig """ifbackend=='fbgemm':qconfig=QConfig(activation=HistogramObserver.with_args(reduce_range=True),weight=default_per_channel_weight_observer)elifbackend=='qnnpack':qconfig=QConfig(activation=HistogramObserver.with_args(reduce_range=False),weight=default_weight_observer)else:qconfig=default_qconfigreturnqconfigdefault_embedding_qat_qconfig=QConfig(activation=NoopObserver.with_args(dtype=torch.float32),weight=default_embedding_fake_quant)default_embedding_qat_qconfig_4bit=QConfig(activation=NoopObserver.with_args(dtype=torch.float32),weight=default_embedding_fake_quant_4bit)defget_default_qat_qconfig(backend='fbgemm',version=1):""" Returns the default QAT qconfig for the specified backend. Args: * `backend`: a string representing the target backend. Currently supports `fbgemm` and `qnnpack`. * `version`: version, for backwards compatibility. Can be `None` or `1`. Return: qconfig """# Histogram observer is too slow for quantization aware trainingifversionisNone:ifbackend=='fbgemm':qconfig=QConfig(activation=FakeQuantize.with_args(observer=MovingAverageMinMaxObserver,quant_min=0,quant_max=255,reduce_range=True),weight=default_per_channel_weight_fake_quant)elifbackend=='qnnpack':qconfig=QConfig(activation=FakeQuantize.with_args(observer=MovingAverageMinMaxObserver,quant_min=0,quant_max=255,reduce_range=False),weight=default_weight_fake_quant)else:qconfig=default_qat_qconfig# Use the fused observer + fake_quant modules for doing QAT.ifversion==1:ifbackend=='fbgemm':qconfig=QConfig(activation=FusedMovingAvgObsFakeQuantize.with_args(observer=MovingAverageMinMaxObserver,quant_min=0,quant_max=255,reduce_range=True),weight=default_fused_per_channel_wt_fake_quant)elifbackend=='qnnpack':qconfig=QConfig(activation=FusedMovingAvgObsFakeQuantize.with_args(observer=MovingAverageMinMaxObserver,quant_min=0,quant_max=255,reduce_range=False),weight=default_fused_wt_fake_quant)else:qconfig=default_qat_qconfig_v2returnqconfigdefget_default_qconfig_dict(backend='fbgemm',version=0):qconfig=get_default_qconfig(backend)return{"":qconfig,"object_type":[("reshape",default_reuse_input_qconfig)]}defget_default_qat_qconfig_dict(backend='fbgemm',version=1):qconfig=get_default_qat_qconfig(backend,version=version)return{"":qconfig,"object_type":[("reshape",default_reuse_input_qconfig)]}defassert_valid_qconfig(qconfig:Optional[QConfig],mod:torch.nn.Module)->None:""" Verifies that this `qconfig` is valid. """ifqconfigisNone:returnis_conv_transpose_mod=(isinstance(mod,torch.nn.ConvTranspose1d)orisinstance(mod,torch.nn.ConvTranspose2d)orisinstance(mod,torch.nn.ConvTranspose3d))ifis_conv_transpose_mod:ifqconfig.weightisNone:# for now, we assume that any qconfig for ConvTranspose without a weight is validreturnexample_observer=qconfig.weight()is_per_channel=(isinstance(example_observer,torch.ao.quantization.PerChannelMinMaxObserver)orisinstance(example_observer,torch.ao.quantization.MovingAveragePerChannelMinMaxObserver))assertnotis_per_channel, \
'Per channel weight observer is not supported yet for ConvTranspose{n}d.'# TODO: remove QConfigAny and replace it with Optional[QConfig]QConfigAny=Optional[QConfig]defadd_module_to_qconfig_obs_ctr(qconfig:QConfigAny,module:Optional[nn.Module])->Any:r"""This is a helper function for use in quantization prepare that updates a qconfig so that the constructors stored in the qconfig will create observers on the same device that 'module' is on. This is intended to be used when the qconfigs are propagated to each module in order to avoid potential device alignment issues. Args: qconfig: QConfig with obs constructors stored in activation and weight module: module which the qconfig is related to Return: qconfig: configured so that obs constructors set to construct on the same device as module """ifmoduleisNoneorqconfigisNoneorqconfig._fields!=('activation','weight'):returnqconfigdefget_factory_kwargs_based_on_module_device():assertisinstance(module,torch.nn.Module)devices={p.deviceforpinmodule.parameters()}| \
{p.deviceforpinmodule.buffers()}device=next(iter(devices))iflen(devices)>0elseNonereturnNoneifdeviceisNoneelse{'device':device}defconfigure_constructor_to_put_obs_on_module_device(original_constructor):try:# check if constructor can accept factory_kwargscheck=original_constructor.with_args(factory_kwargs=None)check()returnoriginal_constructor.with_callable_args(factory_kwargs=get_factory_kwargs_based_on_module_device)exceptAttributeError:# qconfig doesn't have activation or weightreturnoriginal_constructorexceptTypeError:# the class doesn't accept factory_kwargs argumentreturnoriginal_constructoractivation=configure_constructor_to_put_obs_on_module_device(qconfig.activation)weight=configure_constructor_to_put_obs_on_module_device(qconfig.weight)returnQConfig(activation,weight)defqconfig_equals(q1:QConfigAny,q2:QConfigAny):""" Returns `True` if `q1` equals `q2`, and `False` otherwise. """# functools.partial has no __eq__ operator defined so '==' defaults to 'is'defpartial_equals(p1,p2):same=p1.func==p2.funcsame=sameandp1.args==p2.argsreturnsameandp1.keywords==p2.keywordsifq1isNoneorq2isNone:returnq1==q2else:assertq1isnotNoneandq2isnotNonetry:# Qconfig weight and activation can be either a partial wrapper,# or an observer class. Special handling is required (above) for# comparing partial wrappers.if(isinstance(q1.activation,torch.ao.quantization.observer._PartialWrapper)):activation_same=partial_equals(q1.activation.p,q2.activation.p)else:activation_same=q1.activation==q2.activationif(isinstance(q1.weight,torch.ao.quantization.observer._PartialWrapper)):weight_same=partial_equals(q1.weight.p,q2.weight.p)else:weight_same=q1.weight==q2.weightreturnactivation_sameandweight_sameexceptAttributeError:returnq1==q2defactivation_is_memoryless(qconfig:QConfig):""" Return whether the observer for activations defined in the given QConfig is memoryless. """def_is_memoryless(observer):returnhasattr(observer,"memoryless")andobserver.memorylessact=qconfig.activation()ifisinstance(act,FakeQuantizeBase)andhasattr(act,"activation_post_process"):return_is_memoryless(act.activation_post_process)else:return_is_memoryless(act)defis_reuse_input_qconfig(qconfig:Optional[QConfig]):returnqconfigisnotNoneand \
isinstance(qconfig.activation(),ReuseInputObserver)and \
isinstance(qconfig.weight(),NoopObserver)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.