r"""The torch package contains data structures for multi-dimensionaltensors and defines mathematical operations over these tensors.Additionally, it provides many utilities for efficient serializing ofTensors and arbitrary types, and other useful utilities.It has a CUDA counterpart, that enables you to run your tensor computationson an NVIDIA GPU with compute capability >= 3.0."""importosimportsysimportplatformimporttextwrapimportctypesimportwarningsifsys.version_info<(3,):raiseException("Python 2 has reached end-of-life and is no longer supported by PyTorch.")from._utilsimport_import_dotted_name,classpropertyfrom._utils_internalimportget_file_path,prepare_multiprocessing_environment, \
USE_RTLD_GLOBAL_WITH_LIBTORCH,USE_GLOBAL_DEPS# TODO(torch_deploy) figure out how to freeze version.py in fbcode buildifsys.executable=='torch_deploy':__version__="torch-deploy-1.8"else:from.torch_versionimport__version__as__version__from._siximportstring_classesas_string_classesfromtypingimportSet,Type,TYPE_CHECKING,Unionimportbuiltins__all__=['typename','is_tensor','is_storage','set_default_tensor_type','set_rng_state','get_rng_state','manual_seed','initial_seed','seed','save','load','set_printoptions','chunk','split','stack','matmul','no_grad','enable_grad','rand','randn','inference_mode','DoubleStorage','FloatStorage','LongStorage','IntStorage','ShortStorage','CharStorage','ByteStorage','BoolStorage','DoubleTensor','FloatTensor','LongTensor','IntTensor','ShortTensor','CharTensor','ByteTensor','BoolTensor','Tensor','lobpcg','use_deterministic_algorithms','are_deterministic_algorithms_enabled','is_deterministic_algorithms_warn_only_enabled','set_deterministic_debug_mode','get_deterministic_debug_mode','set_warn_always','is_warn_always_enabled',]################################################################################# Load the extension module################################################################################ifsys.platform=='win32':pfiles_path=os.getenv('ProgramFiles','C:\\Program Files')py_dll_path=os.path.join(sys.exec_prefix,'Library','bin')th_dll_path=os.path.join(os.path.dirname(__file__),'lib')# When users create a virtualenv that inherits the base environment,# we will need to add the corresponding library directory into# DLL search directories. Otherwise, it will rely on `PATH` which# is dependent on user settings.ifsys.exec_prefix!=sys.base_exec_prefix:base_py_dll_path=os.path.join(sys.base_exec_prefix,'Library','bin')else:base_py_dll_path=''dll_paths=list(filter(os.path.exists,[th_dll_path,py_dll_path,base_py_dll_path]))ifall([notos.path.exists(os.path.join(p,'nvToolsExt64_1.dll'))forpindll_paths]):nvtoolsext_dll_path=os.path.join(os.getenv('NVTOOLSEXT_PATH',os.path.join(pfiles_path,'NVIDIA Corporation','NvToolsExt')),'bin','x64')else:nvtoolsext_dll_path=''from.versionimportcudaascuda_versionimportglobifcuda_versionandall([notglob.glob(os.path.join(p,'cudart64*.dll'))forpindll_paths]):cuda_version_1=cuda_version.replace('.','_')cuda_path_var='CUDA_PATH_V'+cuda_version_1default_path=os.path.join(pfiles_path,'NVIDIA GPU Computing Toolkit','CUDA','v'+cuda_version)cuda_path=os.path.join(os.getenv(cuda_path_var,default_path),'bin')else:cuda_path=''dll_paths.extend(filter(os.path.exists,[nvtoolsext_dll_path,cuda_path]))kernel32=ctypes.WinDLL('kernel32.dll',use_last_error=True)with_load_library_flags=hasattr(kernel32,'AddDllDirectory')prev_error_mode=kernel32.SetErrorMode(0x0001)kernel32.LoadLibraryW.restype=ctypes.c_void_pifwith_load_library_flags:kernel32.AddDllDirectory.restype=ctypes.c_void_pkernel32.LoadLibraryExW.restype=ctypes.c_void_pfordll_pathindll_paths:ifsys.version_info>=(3,8):os.add_dll_directory(dll_path)elifwith_load_library_flags:res=kernel32.AddDllDirectory(dll_path)ifresisNone:err=ctypes.WinError(ctypes.get_last_error())err.strerror+=f' Error adding "{dll_path}" to the DLL directories.'raiseerrtry:ctypes.CDLL('vcruntime140.dll')ctypes.CDLL('msvcp140.dll')ctypes.CDLL('vcruntime140_1.dll')exceptOSError:print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure. It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')dlls=glob.glob(os.path.join(th_dll_path,'*.dll'))path_patched=Falsefordllindlls:is_loaded=Falseifwith_load_library_flags:res=kernel32.LoadLibraryExW(dll,None,0x00001100)last_error=ctypes.get_last_error()ifresisNoneandlast_error!=126:err=ctypes.WinError(last_error)err.strerror+=f' Error loading "{dll}" or one of its dependencies.'raiseerrelifresisnotNone:is_loaded=Trueifnotis_loaded:ifnotpath_patched:os.environ['PATH']=';'.join(dll_paths+[os.environ['PATH']])path_patched=Trueres=kernel32.LoadLibraryW(dll)ifresisNone:err=ctypes.WinError(ctypes.get_last_error())err.strerror+=f' Error loading "{dll}" or one of its dependencies.'raiseerrkernel32.SetErrorMode(prev_error_mode)# See Note [Global dependencies]def_load_global_deps():ifplatform.system()=='Windows'orsys.executable=='torch_deploy':returnlib_name='libtorch_global_deps'+('.dylib'ifplatform.system()=='Darwin'else'.so')here=os.path.abspath(__file__)lib_path=os.path.join(os.path.dirname(here),'lib',lib_name)ctypes.CDLL(lib_path,mode=ctypes.RTLD_GLOBAL)if(USE_RTLD_GLOBAL_WITH_LIBTORCHoros.getenv('TORCH_USE_RTLD_GLOBAL'))and \
platform.system()!='Windows':# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a# few circumstances:## 1. You're in a build environment (e.g., fbcode) where# libtorch_global_deps is not available, but you still need# to get mkl to link in with RTLD_GLOBAL or it will just# not work.## 2. You're trying to run PyTorch under UBSAN and you need# to ensure that only one copy of libtorch is loaded, so# vptr checks work properly## If you're using this setting, you must verify that all the libraries# you load consistently use the same libstdc++, or you may have# mysterious segfaults.#importosas_dl_flagsifnothasattr(_dl_flags,'RTLD_GLOBAL')ornothasattr(_dl_flags,'RTLD_LAZY'):try:# next try if DLFCN existsimportDLFCNas_dl_flags# type: ignore[import, no-redef]exceptImportError:# as a last attempt, use compile-time constantsimporttorch._dlas_dl_flags# type: ignore[import, no-redef]old_flags=sys.getdlopenflags()sys.setdlopenflags(_dl_flags.RTLD_GLOBAL|_dl_flags.RTLD_LAZY)fromtorch._Cimport*# noqa: F403sys.setdlopenflags(old_flags)delold_flagsdel_dl_flagselse:# Easy way. You want this most of the time, because it will prevent# C++ symbols from libtorch clobbering C++ symbols from other# libraries, leading to mysterious segfaults.## If building in an environment where libtorch_global_deps isn't available# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False## See Note [Global dependencies]ifUSE_GLOBAL_DEPS:_load_global_deps()fromtorch._Cimport*# noqa: F403# Appease the type checker; ordinarily this binding is inserted by the# torch._C module initialization code in CifTYPE_CHECKING:importtorch._Cas_C# Check to see if we can load C extensions, and if not provide some guidance# on what the problem might be.try:# _initExtension is chosen (arbitrarily) as a sentinel.fromtorch._Cimport_initExtensionexceptImportError:importtorch._Cas_C_for_compiled_check# The __file__ check only works for Python 3.7 and above.ifsys.version_info>=(3,7)and_C_for_compiled_check.__file__isNone:raiseImportError(textwrap.dedent(''' Failed to load PyTorch C extensions: It appears that PyTorch has loaded the `torch/_C` folder of the PyTorch repository rather than the C extensions which are expected in the `torch._C` namespace. This can occur when using the `install` workflow. e.g. $ python setup.py install && python -c "import torch" This error can generally be solved using the `develop` workflow $ python setup.py develop && python -c "import torch" # This should succeed or by running Python from a different directory. ''').strip())fromNoneraise# If __file__ is not None the cause is unknown, so just re-raise.__all__+=[namefornameindir(_C)ifname[0]!='_'andnotname.endswith('Base')]ifnotTYPE_CHECKING:# issue 38137 and python issue 43367. Submodules of a C extension are# non-standard, and attributes of those submodules cannot be pickled since# pickle expect to be able to import them as "from _C.sub import attr"# which fails with "_C is not a packageforattrindir(_C):candidate=getattr(_C,attr)iftype(candidate)istype(_C):# submoduleiff'torch._C.{attr}'notinsys.modules:sys.modules[f'torch._C.{attr}']=candidate################################################################################# Define basic utilities################################################################################deftypename(o):ifisinstance(o,torch.Tensor):returno.type()module=''class_name=''ifhasattr(o,'__module__')ando.__module__!='builtins' \
ando.__module__!='__builtin__'ando.__module__isnotNone:module=o.__module__+'.'ifhasattr(o,'__qualname__'):class_name=o.__qualname__elifhasattr(o,'__name__'):class_name=o.__name__else:class_name=o.__class__.__name__returnmodule+class_namedefis_tensor(obj):r"""Returns True if `obj` is a PyTorch tensor. Note that this function is simply doing ``isinstance(obj, Tensor)``. Using that ``isinstance`` check is better for typechecking with mypy, and more explicit - so it's recommended to use that instead of ``is_tensor``. Args: obj (Object): Object to test Example:: >>> x=torch.tensor([1,2,3]) >>> torch.is_tensor(x) True """returnisinstance(obj,torch.Tensor)defis_storage(obj):r"""Returns True if `obj` is a PyTorch storage object. Args: obj (Object): Object to test """returntype(obj)in_storage_classesdefset_default_tensor_type(t):r"""Sets the default ``torch.Tensor`` type to floating point tensor type ``t``. This type will also be used as default floating point type for type inference in :func:`torch.tensor`. The default floating point tensor type is initially ``torch.FloatTensor``. Args: t (type or string): the floating point tensor type or its name Example:: >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_tensor_type(torch.DoubleTensor) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 """ifisinstance(t,_string_classes):t=_import_dotted_name(t)_C._set_default_tensor_type(t)defset_default_dtype(d):r""" Sets the default floating point dtype to :attr:`d`. Supports torch.float32 and torch.float64 as inputs. Other dtypes may be accepted without complaint but are not supported and are unlikely to work as expected. When PyTorch is initialized its default floating point dtype is torch.float32, and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like type inference. The default floating point dtype is used to: 1. Implicitly determine the default complex dtype. When the default floating point type is float32 the default complex dtype is complex64, and when the default floating point type is float64 the default complex type is complex128. 2. Infer the dtype for tensors constructed using Python floats or complex Python numbers. See examples below. 3. Determine the result of type promotion between bool and integer tensors and Python floats and complex Python numbers. Args: d (:class:`torch.dtype`): the floating point dtype to make the default. Either torch.float32 or torch.float64. Example: >>> # initial default for floating point is torch.float32 >>> # Python floats are interpreted as float32 >>> torch.tensor([1.2, 3]).dtype torch.float32 >>> # initial default for floating point is torch.complex64 >>> # Complex Python numbers are interpreted as complex64 >>> torch.tensor([1.2, 3j]).dtype torch.complex64 >>> torch.set_default_dtype(torch.float64) >>> # Python floats are now interpreted as float64 >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 >>> # Complex Python numbers are now interpreted as complex128 >>> torch.tensor([1.2, 3j]).dtype # a new complex tensor torch.complex128 """_C._set_default_dtype(d)defuse_deterministic_algorithms(mode,*,warn_only=False):r""" Sets whether PyTorch operations must use "deterministic" algorithms. That is, algorithms which, given the same input, and when run on the same software and hardware, always produce the same output. When enabled, operations will use deterministic algorithms when available, and if only nondeterministic algorithms are available they will throw a :class:`RuntimeError` when called. .. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative interface for this feature. The following normally-nondeterministic operations will act deterministically when ``mode=True``: * :class:`torch.nn.Conv1d` when called on CUDA tensor * :class:`torch.nn.Conv2d` when called on CUDA tensor * :class:`torch.nn.Conv3d` when called on CUDA tensor * :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor * :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor * :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor * :func:`torch.bmm` when called on sparse-dense CUDA tensors * :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor and the index is a list of tensors * :func:`torch.Tensor.index_put` with ``accumulate=False`` * :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU tensor * :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU tensor * :func:`torch.Tensor.scatter_add_` when ``input`` dimension is one and called on a CUDA tensor * :func:`torch.gather` when ``input`` dimension is one and called on a CUDA tensor that requires grad * :func:`torch.index_add` when called on CUDA tensor * :func:`torch.index_select` when attempting to differentiate a CUDA tensor * :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor * :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor The following normally-nondeterministic operations will throw a :class:`RuntimeError` when ``mode=True``: * :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor * :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor and one of the following modes is used: - ``linear`` - ``bilinear`` - ``bicubic`` - ``trilinear`` * :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor * :class:`torch.nn.NLLLoss` when called on a CUDA tensor * :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor * :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when ``mode='max'`` * :func:`torch.Tensor.scatter_add_` when ``input`` dimension is larger than one and called on a CUDA tensor * :func:`torch.gather` when ``input`` dimension is larger than one and called on a CUDA tensor that requires grad * :func:`torch.Tensor.put_` when ``accumulate=False`` * :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor * :func:`torch.histc` when called on a CUDA tensor * :func:`torch.bincount` when called on a CUDA tensor * :func:`torch.kthvalue` with called on a CUDA tensor * :func:`torch.median` with indices output when called on a CUDA tensor * :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor A handful of CUDA operations are nondeterministic if the CUDA version is 10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8`` or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_ If one of these environment variable configurations is not set, a :class:`RuntimeError` will be raised from these operations when called with CUDA tensors: * :func:`torch.mm` * :func:`torch.mv` * :func:`torch.bmm` Note that deterministic operations tend to have worse performance than nondeterministic operations. .. note:: This flag does not detect or prevent nondeterministic behavior caused by calling an inplace operation on a tensor with an internal memory overlap or by giving such a tensor as the :attr:`out` argument for an operation. In these cases, multiple writes of different data may target a single memory location, and the order of writes is not guaranteed. Args: mode (:class:`bool`): If True, makes potentially nondeterministic operations switch to a deterministic algorithm or throw a runtime error. If False, allows nondeterministic operations. Keyword args: warn_only (:class:`bool`, optional): If True, operations that do not have a deterministic implementation will throw a warning instead of an error. Default: ``False`` Example:: >>> torch.use_deterministic_algorithms(True) # Forward mode nondeterministic error >>> torch.randn(10).index_copy(0, torch.tensor([0]), torch.randn(1)) ... RuntimeError: index_copy does not have a deterministic implementation... # Backward mode nondeterministic error >>> torch.randn(10, requires_grad=True, device='cuda').index_select(0, torch.tensor([0], device='cuda')).backward() ... RuntimeError: index_add_cuda_ does not have a deterministic implementation... """_C._set_deterministic_algorithms(mode,warn_only=warn_only)defare_deterministic_algorithms_enabled():r"""Returns True if the global deterministic flag is turned on. Refer to :func:`torch.use_deterministic_algorithms` documentation for more details. """return_C._get_deterministic_algorithms()defis_deterministic_algorithms_warn_only_enabled():r"""Returns True if the global deterministic flag is set to warn only. Refer to :func:`torch.use_deterministic_algorithms` documentation for more details. """return_C._get_deterministic_algorithms_warn_only()defset_deterministic_debug_mode(debug_mode:Union[builtins.int,str])->None:r"""Sets the debug mode for deterministic operations. .. note:: This is an alternative interface for :func:`torch.use_deterministic_algorithms`. Refer to that function's documentation for details about affected operations. Args: debug_mode(str or int): If "default" or 0, don't error or warn on nondeterministic operations. If "warn" or 1, warn on nondeterministic operations. If "error" or 2, error on nondeterministic operations. """# NOTE: builtins.int is used here because int in this scope resolves# to torch.intifnotisinstance(debug_mode,(builtins.int,str)):raiseTypeError(f'debug_mode must be str or int, but got {type(debug_mode)}')ifisinstance(debug_mode,str):ifdebug_mode=='default':debug_mode=0elifdebug_mode=='warn':debug_mode=1elifdebug_mode=='error':debug_mode=2else:raiseRuntimeError('invalid value of debug_mode, expected one of `default`, 'f'`warn`, `error`, but got {debug_mode}')ifdebug_mode==0:_C._set_deterministic_algorithms(False)elifdebug_mode==1:_C._set_deterministic_algorithms(True,warn_only=True)elifdebug_mode==2:_C._set_deterministic_algorithms(True)else:raiseRuntimeError('invalid value of debug_mode, expected 0, 1, or 2, 'f'but got {debug_mode}')defget_deterministic_debug_mode()->builtins.int:r"""Returns the current value of the debug mode for deterministic operations. Refer to :func:`torch.set_deterministic_debug_mode` documentation for more details. """if_C._get_deterministic_algorithms():if_C._get_deterministic_algorithms_warn_only():return1else:return2else:return0defset_warn_always(b):r"""When this flag is False (default) then some PyTorch warnings may only appear once per process. This helps avoid excessive warning information. Setting it to True causes these warnings to always appear, which may be helpful when debugging. Args: b (:class:`bool`): If True, force warnings to always be emitted If False, set to the default behaviour """_C._set_warnAlways(b)defis_warn_always_enabled():r"""Returns True if the global warn_always flag is turned on. Refer to :func:`torch.set_warn_always` documentation for more details. """return_C._get_warnAlways()################################################################################# Define numeric constants################################################################################# For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and# NumPy consistency (https://numpy.org/devdocs/reference/constants.html)frommathimporte,nan,inf,pi__all__.extend(['e','pi','nan','inf'])################################################################################# Define Storage and Tensor classes################################################################################from._tensorimportTensorfrom.storageimport_StorageBase,_TypedStorage# NOTE: New <type>Storage classes should never be added. When adding a new# dtype, use torch.storage._TypedStorage directly.class_UntypedStorage(_C.ByteStorageBase,_StorageBase):pass
classQUInt2x4Storage(_TypedStorage):@classpropertydefdtype(self):returntorch.quint2x4_storage_classes={_UntypedStorage,DoubleStorage,FloatStorage,LongStorage,IntStorage,ShortStorage,CharStorage,ByteStorage,HalfStorage,BoolStorage,QUInt8Storage,QInt8Storage,QInt32Storage,BFloat16Storage,ComplexFloatStorage,ComplexDoubleStorage,QUInt4x2Storage,QUInt2x4Storage,}# The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()_tensor_classes:Set[Type]=set()# If you edit these imports, please update torch/__init__.py.in as wellfrom.randomimportset_rng_state,get_rng_state,manual_seed,initial_seed,seedfrom.serializationimportsave,loadfrom._tensor_strimportset_printoptions################################################################################# Initialize extension################################################################################defmanager_path():ifplatform.system()=='Windows'orsys.executable=='torch_deploy':returnb""path=get_file_path('torch','bin','torch_shm_manager')prepare_multiprocessing_environment(get_file_path('torch'))ifnotos.path.exists(path):raiseRuntimeError("Unable to find torch_shm_manager at "+path)returnpath.encode('utf-8')from.autocast_modeimportautocast# Shared memory manager needs to know the exact location of manager executable_C._initExtension(manager_path())delmanager_path# Appease the type checker: it can't deal with direct setting of globals().# Note that we will see "too many" functions when reexporting this way; there# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions# so that this import is good enoughifTYPE_CHECKING:# Some type signatures pulled in from _VariableFunctions here clash with# signatures already imported. For now these clashes are ignored; see# PR #43339 for details.fromtorch._C._VariableFunctionsimport*# type: ignore[misc] # noqa: F403# Ops not to be exposed in `torch` namespace,# mostly helper ops.PRIVATE_OPS=('unique_dim',)fornameindir(_C._VariableFunctions):ifname.startswith('__')ornameinPRIVATE_OPS:continueglobals()[name]=getattr(_C._VariableFunctions,name)__all__.append(name)################################################################################# Import interface functions defined in Python################################################################################# needs to be after the above ATen bindings so we can overwrite from Python sidefrom.functionalimport*# noqa: F403################################################################################# Remove unnecessary members################################################################################delByteStorageBase################################################################################# Define _assert################################################################################# needs to be before the submodule imports to avoid circular dependenciesdef_assert(condition,message):r"""A wrapper around Python's assert which is symbolically traceable. """from.overridesimporthas_torch_function,handle_torch_functioniftype(condition)isnottorch.Tensorandhas_torch_function((condition,)):returnhandle_torch_function(_assert,(condition,),condition,message)assertcondition,message################################################################################# Import most common subpackages################################################################################# Use the redundant form so that type checkers know that these are a part of# the public API. The "regular" import lines are there solely for the runtime# side effect of adding to the imported module's members for other users.fromtorchimportcudaascudafromtorchimportcpuascpufromtorchimportautogradasautogradfromtorch.autogradimport(no_gradasno_grad,enable_gradasenable_grad,set_grad_enabledasset_grad_enabled,inference_modeasinference_mode,)fromtorchimportfftasfftfromtorchimportfuturesasfuturesfromtorchimportnnasnnimporttorch.nn.intrinsicimporttorch.nn.quantizableimporttorch.nn.quantized# AO depends on nn, as well as quantized stuff -- so should be after those.fromtorchimportaoasaofromtorchimportoptimasoptimimporttorch.optim._multi_tensorfromtorchimportmultiprocessingasmultiprocessingfromtorchimportsparseassparsefromtorchimportspecialasspecialimporttorch.utils.backcompatfromtorchimportonnxasonnxfromtorchimportjitasjitfromtorchimportlinalgaslinalgfromtorchimporthubashubfromtorchimportrandomasrandomfromtorchimportdistributionsasdistributionsfromtorchimporttestingastestingimporttorch.backends.cudaimporttorch.backends.cudnnimporttorch.backends.mklimporttorch.backends.mkldnnimporttorch.backends.openmpimporttorch.backends.quantizedimporttorch.utils.datafromtorchimport__config__as__config__fromtorchimport__future__as__future__fromtorchimportprofilerasprofiler_C._init_names(list(torch._storage_classes))# attach docstrings to torch and tensor functionsfrom.import_torch_docs,_tensor_docs,_storage_docsdel_torch_docs,_tensor_docs,_storage_docsdefcompiled_with_cxx11_abi():r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""return_C._GLIBCXX_USE_CXX11_ABI# Import the ops "namespace"fromtorch._opsimportopsfromtorch._classesimportclasses# quantization depends on torch.fx# Import quantizationfromtorchimportquantizationasquantization# Import the quasi random samplerfromtorchimportquasirandomasquasirandom# If you are seeing this, it means that this call site was not checked if# the memory format could be preserved, and it was switched to old default# behaviour of contiguouslegacy_contiguous_format=contiguous_format# Register fork handler to initialize OpenMP in child processes (see gh-28389)fromtorch.multiprocessing._atforkimportregister_after_forkregister_after_fork(torch.get_num_threads)delregister_after_fork# Import tools that require fully imported torch (for applying# torch.jit.script as a decorator, for instance):from._lobpcgimportlobpcgaslobpcg# These were previously defined in native_functions.yaml and appeared on the# `torch` namespace, but we moved them to c10 dispatch to facilitate custom# class usage. We add these lines here to preserve backward compatibility.quantized_lstm=torch.ops.aten.quantized_lstmquantized_gru=torch.ops.aten.quantized_grufromtorch.utils.dlpackimportfrom_dlpack,to_dlpack# Import experimental masked operations support. See# [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more# information.from.import_maskeddef_register_device_module(device_type,module):r"""Register an external runtime module of the specific :attr:`device_type` supported by torch. After the :attr:`module` is registered correctly, the user can refer the external runtime module as part of torch with attribute torch.xxx. """# Make sure the device_type represent a supported device type for torch.device_type=torch.device(device_type).typem=sys.modules[__name__]ifhasattr(m,device_type):raiseRuntimeError("The runtime module of '{}' has already ""been registered with '{}'".format(device_type,getattr(m,device_type)))setattr(m,device_type,module)# expose return_typesfrom.importreturn_types
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.