Shortcuts

Source code for torch.nn.modules.activation

import warnings
from typing import Optional, Tuple

import torch
from torch import Tensor
from .linear import NonDynamicallyQuantizableLinear
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
from .module import Module
from .. import functional as F


[docs]class Threshold(Module): r"""Thresholds each element of the input Tensor. Threshold is defined as: .. math:: y = \begin{cases} x, &\text{ if } x > \text{threshold} \\ \text{value}, &\text{ otherwise } \end{cases} Args: threshold: The value to threshold at value: The value to replace with inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Threshold(0.1, 20) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['threshold', 'value', 'inplace'] threshold: float value: float inplace: bool def __init__(self, threshold: float, value: float, inplace: bool = False) -> None: super(Threshold, self).__init__() self.threshold = threshold self.value = value self.inplace = inplace # TODO: check in THNN (if inplace == True, then assert value <= threshold) def forward(self, input: Tensor) -> Tensor: return F.threshold(input, self.threshold, self.value, self.inplace) def extra_repr(self): inplace_str = ', inplace=True' if self.inplace else '' return 'threshold={}, value={}{}'.format( self.threshold, self.value, inplace_str )
[docs]class ReLU(Module): r"""Applies the rectified linear unit function element-wise: :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)` Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ReLU.png Examples:: >>> m = nn.ReLU() >>> input = torch.randn(2) >>> output = m(input) An implementation of CReLU - https://arxiv.org/abs/1603.05201 >>> m = nn.ReLU() >>> input = torch.randn(2).unsqueeze(0) >>> output = torch.cat((m(input),m(-input))) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(ReLU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.relu(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str
[docs]class RReLU(Module): r"""Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper: `Empirical Evaluation of Rectified Activations in Convolutional Network`_. The function is defined as: .. math:: \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} where :math:`a` is randomly sampled from uniform distribution :math:`\mathcal{U}(\text{lower}, \text{upper})`. See: https://arxiv.org/pdf/1505.00853.pdf Args: lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.RReLU(0.1, 0.3) >>> input = torch.randn(2) >>> output = m(input) .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: https://arxiv.org/abs/1505.00853 """ __constants__ = ['lower', 'upper', 'inplace'] lower: float upper: float inplace: bool def __init__( self, lower: float = 1. / 8, upper: float = 1. / 3, inplace: bool = False ): super(RReLU, self).__init__() self.lower = lower self.upper = upper self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) def extra_repr(self): inplace_str = ', inplace=True' if self.inplace else '' return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str)
class Hardtanh(Module): r"""Applies the HardTanh function element-wise HardTanh is defined as: .. math:: \text{HardTanh}(x) = \begin{cases} 1 & \text{ if } x > 1 \\ -1 & \text{ if } x < -1 \\ x & \text{ otherwise } \\ \end{cases} The range of the linear region :math:`[-1, 1]` can be adjusted using :attr:`min_val` and :attr:`max_val`. Args: min_val: minimum value of the linear region range. Default: -1 max_val: maximum value of the linear region range. Default: 1 inplace: can optionally do the operation in-place. Default: ``False`` Keyword arguments :attr:`min_value` and :attr:`max_value` have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardtanh.png Examples:: >>> m = nn.Hardtanh(-2, 2) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['min_val', 'max_val', 'inplace'] min_val: float max_val: float inplace: bool def __init__( self, min_val: float = -1., max_val: float = 1., inplace: bool = False, min_value: Optional[float] = None, max_value: Optional[float] = None ) -> None: super(Hardtanh, self).__init__() if min_value is not None: warnings.warn("keyword argument min_value is deprecated and rename to min_val") min_val = min_value if max_value is not None: warnings.warn("keyword argument max_value is deprecated and rename to max_val") max_val = max_value self.min_val = min_val self.max_val = max_val self.inplace = inplace assert self.max_val > self.min_val def forward(self, input: Tensor) -> Tensor: return F.hardtanh(input, self.min_val, self.max_val, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'min_val={}, max_val={}{}'.format( self.min_val, self.max_val, inplace_str )
[docs]class ReLU6(Hardtanh): r"""Applies the element-wise function: .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ReLU6.png Examples:: >>> m = nn.ReLU6() >>> input = torch.randn(2) >>> output = m(input) """ def __init__(self, inplace: bool = False): super(ReLU6, self).__init__(0., 6., inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str
[docs]class Sigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Sigmoid.png Examples:: >>> m = nn.Sigmoid() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return torch.sigmoid(input)
class Hardsigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge +3, \\ x / 6 + 1 / 2 & \text{otherwise} \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Hardsigmoid() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace : bool = False) -> None: super(Hardsigmoid, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.hardsigmoid(input, self.inplace)
[docs]class Tanh(Module): r"""Applies the element-wise function: .. math:: \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Tanh.png Examples:: >>> m = nn.Tanh() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return torch.tanh(input)
[docs]class SiLU(Module): r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function. .. math:: \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} .. note:: See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ where the SiLU (Sigmoid Linear Unit) was originally coined, and see `Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ where the SiLU was experimented with later. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.SiLU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(SiLU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.silu(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str
[docs]class Mish(Module): r"""Applies the Mish function, element-wise. Mish: A Self Regularized Non-Monotonic Neural Activation Function. .. math:: \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) .. note:: See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Mish() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(Mish, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.mish(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str
class Hardswish(Module): r"""Applies the hardswish function, element-wise, as described in the paper: `Searching for MobileNetV3`_. .. math:: \text{Hardswish}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ x & \text{if~} x \ge +3, \\ x \cdot (x + 3) /6 & \text{otherwise} \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Hardswish() >>> input = torch.randn(2) >>> output = m(input) .. _`Searching for MobileNetV3`: https://arxiv.org/abs/1905.02244 """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace : bool = False) -> None: super(Hardswish, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.hardswish(input, self.inplace) class ELU(Module): r"""Applies the element-wise function: .. math:: \text{ELU}(x) = \begin{cases} x, & \text{ if } x > 0\\ \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 \end{cases} Args: alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ELU.png Examples:: >>> m = nn.ELU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['alpha', 'inplace'] alpha: float inplace: bool def __init__(self, alpha: float = 1., inplace: bool = False) -> None: super(ELU, self).__init__() self.alpha = alpha self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.elu(input, self.alpha, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str) class CELU(Module): r"""Applies the element-wise function: .. math:: \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . Args: alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/CELU.png Examples:: >>> m = nn.CELU() >>> input = torch.randn(2) >>> output = m(input) .. _`Continuously Differentiable Exponential Linear Units`: https://arxiv.org/abs/1704.07483 """ __constants__ = ['alpha', 'inplace'] alpha: float inplace: bool def __init__(self, alpha: float = 1., inplace: bool = False) -> None: super(CELU, self).__init__() self.alpha = alpha self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.celu(input, self.alpha, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str)
[docs]class SELU(Module): r"""Applied element-wise, as: .. math:: \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) with :math:`\alpha = 1.6732632423543772848170429916717` and :math:`\text{scale} = 1.0507009873554804934193349852946`. .. warning:: When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation, ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'`` in order to get `Self-Normalizing Neural Networks`_. See :func:`torch.nn.init.calculate_gain` for more information. More details can be found in the paper `Self-Normalizing Neural Networks`_ . Args: inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/SELU.png Examples:: >>> m = nn.SELU() >>> input = torch.randn(2) >>> output = m(input) .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False) -> None: super(SELU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.selu(input, self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str
class GLU(Module): r"""Applies the gated linear unit function :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half of the input matrices and :math:`b` is the second half. Args: dim (int): the dimension on which to split the input. Default: -1 Shape: - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` Examples:: >>> m = nn.GLU() >>> input = torch.randn(4, 2) >>> output = m(input) """ __constants__ = ['dim'] dim: int def __init__(self, dim: int = -1) -> None: super(GLU, self).__init__() self.dim = dim def forward(self, input: Tensor) -> Tensor: return F.glu(input, self.dim) def extra_repr(self) -> str: return 'dim={}'.format(self.dim) class GELU(Module): r"""Applies the Gaussian Error Linear Units function: .. math:: \text{GELU}(x) = x * \Phi(x) where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/GELU.png Examples:: >>> m = nn.GELU() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.gelu(input) class Hardshrink(Module): r"""Applies the hard shrinkage function element-wise: .. math:: \text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardshrink.png Examples:: >>> m = nn.Hardshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] lambd: float def __init__(self, lambd: float = 0.5) -> None: super(Hardshrink, self).__init__() self.lambd = lambd def forward(self, input: Tensor) -> Tensor: return F.hardshrink(input, self.lambd) def extra_repr(self) -> str: return '{}'.format(self.lambd) class LeakyReLU(Module): r"""Applies the element-wise function: .. math:: \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) or .. math:: \text{LeakyRELU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} Args: negative_slope: Controls the angle of the negative slope. Default: 1e-2 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input .. image:: ../scripts/activation_images/LeakyReLU.png Examples:: >>> m = nn.LeakyReLU(0.1) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace', 'negative_slope'] inplace: bool negative_slope: float def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None: super(LeakyReLU, self).__init__() self.negative_slope = negative_slope self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.leaky_relu(input, self.negative_slope, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'negative_slope={}{}'.format(self.negative_slope, inplace_str) class LogSigmoid(Module): r"""Applies the element-wise function: .. math:: \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/LogSigmoid.png Examples:: >>> m = nn.LogSigmoid() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.logsigmoid(input)
[docs]class Softplus(Module): r"""Applies the element-wise function: .. math:: \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function when :math:`input \times \beta > threshold`. Args: beta: the :math:`\beta` value for the Softplus formulation. Default: 1 threshold: values above this revert to a linear function. Default: 20 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softplus.png Examples:: >>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['beta', 'threshold'] beta: int threshold: int def __init__(self, beta: int = 1, threshold: int = 20) -> None: super(Softplus, self).__init__() self.beta = beta self.threshold = threshold def forward(self, input: Tensor) -> Tensor: return F.softplus(input, self.beta, self.threshold) def extra_repr(self) -> str: return 'beta={}, threshold={}'.format(self.beta, self.threshold)
[docs]class Softshrink(Module): r"""Applies the soft shrinkage function elementwise: .. math:: \text{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{ if } x > \lambda \\ x + \lambda, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softshrink.png Examples:: >>> m = nn.Softshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] lambd: float def __init__(self, lambd: float = 0.5) -> None: super(Softshrink, self).__init__() self.lambd = lambd def forward(self, input: Tensor) -> Tensor: return F.softshrink(input, self.lambd) def extra_repr(self) -> str: return str(self.lambd)
[docs]class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: Total dimension of the model. num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). bias: If specified, adds bias to input / output projection layers. Default: ``True``. add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: ``False``. kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ __constants__ = ['batch_first'] bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs)) self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs)) self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs)) else: self.register_parameter('in_proj_bias', None) self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs) if add_bias_kv: self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state)
[docs] def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against key-value pairs to produce the output. See "Attention Is All You Need" for more details. key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details. value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details. key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key`` value will be ignored. need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. Default: ``True``. attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the corresponding position is not allowed to attend. For a float mask, the mask values will be added to the attention weight. Outputs: - **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the embedding dimension ``embed_dim``. - **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned when ``need_weights=True``. """ if self.batch_first: query, key, value = [x.transpose(1, 0) for x in (query, key, value)] if not self._qkv_same_embed_dim: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask) if self.batch_first: return attn_output.transpose(1, 0), attn_output_weights else: return attn_output, attn_output_weights
[docs]class PReLU(Module): r"""Applies the element-wise function: .. math:: \text{PReLU}(x) = \max(0,x) + a * \min(0,x) or .. math:: \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, a separate :math:`a` is used for each input channel. .. note:: weight decay should not be used when learning :math:`a` for good performance. .. note:: Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1. Args: num_parameters (int): number of :math:`a` to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1 init (float): the initial value of :math:`a`. Default: 0.25 Shape: - Input: :math:`( *)` where `*` means, any number of additional dimensions. - Output: :math:`(*)`, same shape as the input. Attributes: weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). .. image:: ../scripts/activation_images/PReLU.png Examples:: >>> m = nn.PReLU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['num_parameters'] num_parameters: int def __init__(self, num_parameters: int = 1, init: float = 0.25, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} self.num_parameters = num_parameters super(PReLU, self).__init__() self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init)) def forward(self, input: Tensor) -> Tensor: return F.prelu(input, self.weight) def extra_repr(self) -> str: return 'num_parameters={}'.format(self.num_parameters)
[docs]class Softsign(Module): r"""Applies the element-wise function: .. math:: \text{SoftSign}(x) = \frac{x}{ 1 + |x|} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softsign.png Examples:: >>> m = nn.Softsign() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.softsign(input)
[docs]class Tanhshrink(Module): r"""Applies the element-wise function: .. math:: \text{Tanhshrink}(x) = x - \tanh(x) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Tanhshrink.png Examples:: >>> m = nn.Tanhshrink() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.tanhshrink(input)
[docs]class Softmin(Module): r"""Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range `[0, 1]` and sum to 1. Softmin is defined as: .. math:: \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Args: dim (int): A dimension along which Softmin will be computed (so every slice along dim will sum to 1). Returns: a Tensor of the same dimension and shape as the input, with values in the range [0, 1] Examples:: >>> m = nn.Softmin() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(Softmin, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.softmin(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim)
[docs]class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} When the input Tensor is a sparse tensor then the unspecifed values are treated as ``-inf``. Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Args: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self) -> str: return 'dim={dim}'.format(dim=self.dim)
[docs]class Softmax2d(Module): r"""Applies SoftMax over features to each spatial location. When given an image of ``Channels x Height x Width``, it will apply `Softmax` to each location :math:`(Channels, h_i, w_j)` Shape: - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input) Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Examples:: >>> m = nn.Softmax2d() >>> # you softmax over the 2nd dimension >>> input = torch.randn(2, 3, 12, 13) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: assert input.dim() == 4 or input.dim() == 3, 'Softmax2d requires a 3D or 4D tensor as input' return F.softmax(input, -3, _stacklevel=5)
class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Args: dim (int): A dimension along which LogSoftmax will be computed. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) Examples:: >>> m = nn.LogSoftmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(LogSoftmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.log_softmax(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources