importerrnoimporthashlibimportjsonimportosimportreimportshutilimportsysimporttempfileimporttorchimportwarningsimportzipfilefromurllib.errorimportHTTPErrorfromurllib.requestimporturlopen,Requestfromurllib.parseimporturlparse# noqa: F401try:fromtqdm.autoimporttqdm# automatically select proper tqdm submodule if availableexceptImportError:try:fromtqdmimporttqdmexceptImportError:# fake tqdm if it's not installedclasstqdm(object):# type: ignore[no-redef]def__init__(self,total=None,disable=False,unit=None,unit_scale=None,unit_divisor=None):self.total=totalself.disable=disableself.n=0# ignore unit, unit_scale, unit_divisor; they're just for real tqdmdefupdate(self,n):ifself.disable:returnself.n+=nifself.totalisNone:sys.stderr.write("\r{0:.1f} bytes".format(self.n))else:sys.stderr.write("\r{0:.1f}%".format(100*self.n/float(self.total)))sys.stderr.flush()defclose(self):self.disable=Truedef__enter__(self):returnselfdef__exit__(self,exc_type,exc_val,exc_tb):ifself.disable:returnsys.stderr.write('\n')# matches bfd8deac from resnet18-bfd8deac.pthHASH_REGEX=re.compile(r'-([a-f0-9]*)\.')ENV_GITHUB_TOKEN='GITHUB_TOKEN'ENV_TORCH_HOME='TORCH_HOME'ENV_XDG_CACHE_HOME='XDG_CACHE_HOME'DEFAULT_CACHE_DIR='~/.cache'VAR_DEPENDENCY='dependencies'MODULE_HUBCONF='hubconf.py'READ_DATA_CHUNK=8192_hub_dir=None# Copied from tools/shared/module_loader to be included in torch packagedefimport_module(name,path):importimportlib.utilfromimportlib.abcimportLoaderspec=importlib.util.spec_from_file_location(name,path)module=importlib.util.module_from_spec(spec)assertisinstance(spec.loader,Loader)spec.loader.exec_module(module)returnmoduledef_remove_if_exists(path):ifos.path.exists(path):ifos.path.isfile(path):os.remove(path)else:shutil.rmtree(path)def_git_archive_link(repo_owner,repo_name,branch):return'https://github.com/{}/{}/archive/{}.zip'.format(repo_owner,repo_name,branch)def_load_attr_from_module(module,func_name):# Check if callable is defined in the moduleiffunc_namenotindir(module):returnNonereturngetattr(module,func_name)def_get_torch_home():torch_home=os.path.expanduser(os.getenv(ENV_TORCH_HOME,os.path.join(os.getenv(ENV_XDG_CACHE_HOME,DEFAULT_CACHE_DIR),'torch')))returntorch_homedef_parse_repo_info(github):if':'ingithub:repo_info,branch=github.split(':')else:repo_info,branch=github,Nonerepo_owner,repo_name=repo_info.split('/')ifbranchisNone:# The branch wasn't specified by the user, so we need to figure out the# default branch: main or master. Our assumption is that if main exists# then it's the default branch, otherwise it's master.try:withurlopen(f"https://github.com/{repo_owner}/{repo_name}/tree/main/"):branch='main'exceptHTTPErrorase:ife.code==404:branch='master'else:raisereturnrepo_owner,repo_name,branchdef_read_url(url):withurlopen(url)asr:returnr.read().decode(r.headers.get_content_charset('utf-8'))def_validate_not_a_forked_repo(repo_owner,repo_name,branch):# Use urlopen to avoid depending on local git.headers={'Accept':'application/vnd.github.v3+json'}token=os.environ.get(ENV_GITHUB_TOKEN)iftokenisnotNone:headers['Authorization']=f'token {token}'forurl_prefixin(f'https://api.github.com/repos/{repo_owner}/{repo_name}/branches',f'https://api.github.com/repos/{repo_owner}/{repo_name}/tags'):page=0whileTrue:page+=1url=f'{url_prefix}?per_page=100&page={page}'response=json.loads(_read_url(Request(url,headers=headers)))# Empty response means no more data to processifnotresponse:breakforbrinresponse:ifbr['name']==branchorbr['commit']['sha'].startswith(branch):returnraiseValueError(f'Cannot find {branch} in https://github.com/{repo_owner}/{repo_name}. ''If it\'s a commit from a forked repo, please call hub.load() with forked repo directly.')def_get_cache_or_reload(github,force_reload,verbose=True,skip_validation=False):# Setup hub_dir to save downloaded fileshub_dir=get_dir()ifnotos.path.exists(hub_dir):os.makedirs(hub_dir)# Parse github repo informationrepo_owner,repo_name,branch=_parse_repo_info(github)# Github allows branch name with slash '/',# this causes confusion with path on both Linux and Windows.# Backslash is not allowed in Github branch name so no need to# to worry about it.normalized_br=branch.replace('/','_')# Github renames folder repo-v1.x.x to repo-1.x.x# We don't know the repo name before downloading the zip file# and inspect name from it.# To check if cached repo exists, we need to normalize folder names.repo_dir=os.path.join(hub_dir,'_'.join([repo_owner,repo_name,normalized_br]))use_cache=(notforce_reload)andos.path.exists(repo_dir)ifuse_cache:ifverbose:sys.stderr.write('Using cache found in {}\n'.format(repo_dir))else:# Validate the tag/branch is from the original repo instead of a forked repoifnotskip_validation:_validate_not_a_forked_repo(repo_owner,repo_name,branch)cached_file=os.path.join(hub_dir,normalized_br+'.zip')_remove_if_exists(cached_file)url=_git_archive_link(repo_owner,repo_name,branch)sys.stderr.write('Downloading: \"{}\" to {}\n'.format(url,cached_file))download_url_to_file(url,cached_file,progress=False)withzipfile.ZipFile(cached_file)ascached_zipfile:extraced_repo_name=cached_zipfile.infolist()[0].filenameextracted_repo=os.path.join(hub_dir,extraced_repo_name)_remove_if_exists(extracted_repo)# Unzip the code and rename the base foldercached_zipfile.extractall(hub_dir)_remove_if_exists(cached_file)_remove_if_exists(repo_dir)shutil.move(extracted_repo,repo_dir)# rename the reporeturnrepo_dirdef_check_module_exists(name):importimportlib.utilreturnimportlib.util.find_spec(name)isnotNonedef_check_dependencies(m):dependencies=_load_attr_from_module(m,VAR_DEPENDENCY)ifdependenciesisnotNone:missing_deps=[pkgforpkgindependenciesifnot_check_module_exists(pkg)]iflen(missing_deps):raiseRuntimeError('Missing dependencies: {}'.format(', '.join(missing_deps)))def_load_entry_from_hubconf(m,model):ifnotisinstance(model,str):raiseValueError('Invalid input: model should be a string of function name')# Note that if a missing dependency is imported at top level of hubconf, it will# throw before this function. It's a chicken and egg situation where we have to# load hubconf to know what're the dependencies, but to import hubconf it requires# a missing package. This is fine, Python will throw proper error message for users._check_dependencies(m)func=_load_attr_from_module(m,model)iffuncisNoneornotcallable(func):raiseRuntimeError('Cannot find callable {} in hubconf'.format(model))returnfunc
[docs]defget_dir():r""" Get the Torch Hub cache directory used for storing downloaded models & weights. If :func:`~torch.hub.set_dir` is not called, default path is ``$TORCH_HOME/hub`` where environment variable ``$TORCH_HOME`` defaults to ``$XDG_CACHE_HOME/torch``. ``$XDG_CACHE_HOME`` follows the X Design Group specification of the Linux filesystem layout, with a default value ``~/.cache`` if the environment variable is not set. """# Issue warning to move data if old env is setifos.getenv('TORCH_HUB'):warnings.warn('TORCH_HUB is deprecated, please use env TORCH_HOME instead')if_hub_dirisnotNone:return_hub_dirreturnos.path.join(_get_torch_home(),'hub')
[docs]defset_dir(d):r""" Optionally set the Torch Hub directory used to save downloaded models & weights. Args: d (string): path to a local folder to save downloaded models & weights. """global_hub_dir_hub_dir=d
[docs]deflist(github,force_reload=False,skip_validation=False):r""" List all callable entrypoints available in the repo specified by ``github``. Args: github (string): a string with format "repo_owner/repo_name[:tag_name]" with an optional tag/branch. If ``tag_name`` is not specified, the default branch is assumed to be ``main`` if it exists, and otherwise ``master``. Example: 'pytorch/vision:0.10' force_reload (bool, optional): whether to discard the existing cache and force a fresh download. Default is ``False``. skip_validation (bool, optional): if ``False``, torchhub will check that the branch or commit specified by the ``github`` argument properly belongs to the repo owner. This will make requests to the GitHub API; you can specify a non-default GitHub token by setting the ``GITHUB_TOKEN`` environment variable. Default is ``False``. Returns: list: The available callables entrypoint Example: >>> entrypoints = torch.hub.list('pytorch/vision', force_reload=True) """repo_dir=_get_cache_or_reload(github,force_reload,verbose=True,skip_validation=skip_validation)sys.path.insert(0,repo_dir)hubconf_path=os.path.join(repo_dir,MODULE_HUBCONF)hub_module=import_module(MODULE_HUBCONF,hubconf_path)sys.path.remove(repo_dir)# We take functions starts with '_' as internal helper functionsentrypoints=[fforfindir(hub_module)ifcallable(getattr(hub_module,f))andnotf.startswith('_')]returnentrypoints
[docs]defhelp(github,model,force_reload=False,skip_validation=False):r""" Show the docstring of entrypoint ``model``. Args: github (string): a string with format <repo_owner/repo_name[:tag_name]> with an optional tag/branch. If ``tag_name`` is not specified, the default branch is assumed to be ``main`` if it exists, and otherwise ``master``. Example: 'pytorch/vision:0.10' model (string): a string of entrypoint name defined in repo's ``hubconf.py`` force_reload (bool, optional): whether to discard the existing cache and force a fresh download. Default is ``False``. skip_validation (bool, optional): if ``False``, torchhub will check that the branch or commit specified by the ``github`` argument properly belongs to the repo owner. This will make requests to the GitHub API; you can specify a non-default GitHub token by setting the ``GITHUB_TOKEN`` environment variable. Default is ``False``. Example: >>> print(torch.hub.help('pytorch/vision', 'resnet18', force_reload=True)) """repo_dir=_get_cache_or_reload(github,force_reload,verbose=True,skip_validation=skip_validation)sys.path.insert(0,repo_dir)hubconf_path=os.path.join(repo_dir,MODULE_HUBCONF)hub_module=import_module(MODULE_HUBCONF,hubconf_path)sys.path.remove(repo_dir)entry=_load_entry_from_hubconf(hub_module,model)returnentry.__doc__
[docs]defload(repo_or_dir,model,*args,source='github',force_reload=False,verbose=True,skip_validation=False,**kwargs):r""" Load a model from a github repo or a local directory. Note: Loading a model is the typical use case, but this can also be used to for loading other objects such as tokenizers, loss functions, etc. If ``source`` is 'github', ``repo_or_dir`` is expected to be of the form ``repo_owner/repo_name[:tag_name]`` with an optional tag/branch. If ``source`` is 'local', ``repo_or_dir`` is expected to be a path to a local directory. Args: repo_or_dir (string): If ``source`` is 'github', this should correspond to a github repo with format ``repo_owner/repo_name[:tag_name]`` with an optional tag/branch, for example 'pytorch/vision:0.10'. If ``tag_name`` is not specified, the default branch is assumed to be ``main`` if it exists, and otherwise ``master``. If ``source`` is 'local' then it should be a path to a local directory. model (string): the name of a callable (entrypoint) defined in the repo/dir's ``hubconf.py``. *args (optional): the corresponding args for callable ``model``. source (string, optional): 'github' or 'local'. Specifies how ``repo_or_dir`` is to be interpreted. Default is 'github'. force_reload (bool, optional): whether to force a fresh download of the github repo unconditionally. Does not have any effect if ``source = 'local'``. Default is ``False``. verbose (bool, optional): If ``False``, mute messages about hitting local caches. Note that the message about first download cannot be muted. Does not have any effect if ``source = 'local'``. Default is ``True``. skip_validation (bool, optional): if ``False``, torchhub will check that the branch or commit specified by the ``github`` argument properly belongs to the repo owner. This will make requests to the GitHub API; you can specify a non-default GitHub token by setting the ``GITHUB_TOKEN`` environment variable. Default is ``False``. **kwargs (optional): the corresponding kwargs for callable ``model``. Returns: The output of the ``model`` callable when called with the given ``*args`` and ``**kwargs``. Example: >>> # from a github repo >>> repo = 'pytorch/vision' >>> model = torch.hub.load(repo, 'resnet50', pretrained=True) >>> # from a local directory >>> path = '/some/local/path/pytorch/vision' >>> model = torch.hub.load(path, 'resnet50', pretrained=True) """source=source.lower()ifsourcenotin('github','local'):raiseValueError(f'Unknown source: "{source}". Allowed values: "github" | "local".')ifsource=='github':repo_or_dir=_get_cache_or_reload(repo_or_dir,force_reload,verbose,skip_validation)model=_load_local(repo_or_dir,model,*args,**kwargs)returnmodel
def_load_local(hubconf_dir,model,*args,**kwargs):r""" Load a model from a local directory with a ``hubconf.py``. Args: hubconf_dir (string): path to a local directory that contains a ``hubconf.py``. model (string): name of an entrypoint defined in the directory's ``hubconf.py``. *args (optional): the corresponding args for callable ``model``. **kwargs (optional): the corresponding kwargs for callable ``model``. Returns: a single model with corresponding pretrained weights. Example: >>> path = '/some/local/path/pytorch/vision' >>> model = _load_local(path, 'resnet50', pretrained=True) """sys.path.insert(0,hubconf_dir)hubconf_path=os.path.join(hubconf_dir,MODULE_HUBCONF)hub_module=import_module(MODULE_HUBCONF,hubconf_path)entry=_load_entry_from_hubconf(hub_module,model)model=entry(*args,**kwargs)sys.path.remove(hubconf_dir)returnmodel
[docs]defdownload_url_to_file(url,dst,hash_prefix=None,progress=True):r"""Download object at the given URL to a local path. Args: url (string): URL of the object to download dst (string): Full path where object will be saved, e.g. ``/tmp/temporary_file`` hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with ``hash_prefix``. Default: None progress (bool, optional): whether or not to display a progress bar to stderr Default: True Example: >>> torch.hub.download_url_to_file('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth', '/tmp/temporary_file') """file_size=Nonereq=Request(url,headers={"User-Agent":"torch.hub"})u=urlopen(req)meta=u.info()ifhasattr(meta,'getheaders'):content_length=meta.getheaders("Content-Length")else:content_length=meta.get_all("Content-Length")ifcontent_lengthisnotNoneandlen(content_length)>0:file_size=int(content_length[0])# We deliberately save it in a temp file and move it after# download is complete. This prevents a local working checkpoint# being overridden by a broken download.dst=os.path.expanduser(dst)dst_dir=os.path.dirname(dst)f=tempfile.NamedTemporaryFile(delete=False,dir=dst_dir)try:ifhash_prefixisnotNone:sha256=hashlib.sha256()withtqdm(total=file_size,disable=notprogress,unit='B',unit_scale=True,unit_divisor=1024)aspbar:whileTrue:buffer=u.read(8192)iflen(buffer)==0:breakf.write(buffer)ifhash_prefixisnotNone:sha256.update(buffer)pbar.update(len(buffer))f.close()ifhash_prefixisnotNone:digest=sha256.hexdigest()ifdigest[:len(hash_prefix)]!=hash_prefix:raiseRuntimeError('invalid hash value (expected "{}", got "{}")'.format(hash_prefix,digest))shutil.move(f.name,dst)finally:f.close()ifos.path.exists(f.name):os.remove(f.name)
def_download_url_to_file(url,dst,hash_prefix=None,progress=True):warnings.warn('torch.hub._download_url_to_file has been renamed to\ torch.hub.download_url_to_file to be a public API,\ _download_url_to_file will be removed in after 1.3 release')download_url_to_file(url,dst,hash_prefix,progress)# Hub used to support automatically extracts from zipfile manually compressed by users.# The legacy zip format expects only one file from torch.save() < 1.6 in the zip.# We should remove this support since zipfile is now default zipfile format for torch.save().def_is_legacy_zip_format(filename):ifzipfile.is_zipfile(filename):infolist=zipfile.ZipFile(filename).infolist()returnlen(infolist)==1andnotinfolist[0].is_dir()returnFalsedef_legacy_zip_load(filename,model_dir,map_location):warnings.warn('Falling back to the old format < 1.6. This support will be ''deprecated in favor of default zipfile format introduced in 1.6. ''Please redo torch.save() to save it in the new zipfile format.')# Note: extractall() defaults to overwrite file if exists. No need to clean up beforehand.# We deliberately don't handle tarfile here since our legacy serialization format was in tar.# E.g. resnet18-5c106cde.pth which is widely used.withzipfile.ZipFile(filename)asf:members=f.infolist()iflen(members)!=1:raiseRuntimeError('Only one file(not dir) is allowed in the zipfile')f.extractall(model_dir)extraced_name=members[0].filenameextracted_file=os.path.join(model_dir,extraced_name)returntorch.load(extracted_file,map_location=map_location)
[docs]defload_state_dict_from_url(url,model_dir=None,map_location=None,progress=True,check_hash=False,file_name=None):r"""Loads the Torch serialized object at the given URL. If downloaded file is a zip file, it will be automatically decompressed. If the object is already present in `model_dir`, it's deserialized and returned. The default value of ``model_dir`` is ``<hub_dir>/checkpoints`` where ``hub_dir`` is the directory returned by :func:`~torch.hub.get_dir`. Args: url (string): URL of the object to download model_dir (string, optional): directory in which to save the object map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load) progress (bool, optional): whether or not to display a progress bar to stderr. Default: True check_hash(bool, optional): If True, the filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. Default: False file_name (string, optional): name for the downloaded file. Filename from ``url`` will be used if not set. Example: >>> state_dict = torch.hub.load_state_dict_from_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth') """# Issue warning to move data if old env is setifos.getenv('TORCH_MODEL_ZOO'):warnings.warn('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')ifmodel_dirisNone:hub_dir=get_dir()model_dir=os.path.join(hub_dir,'checkpoints')try:os.makedirs(model_dir)exceptOSErrorase:ife.errno==errno.EEXIST:# Directory already exists, ignore.passelse:# Unexpected OSError, re-raise.raiseparts=urlparse(url)filename=os.path.basename(parts.path)iffile_nameisnotNone:filename=file_namecached_file=os.path.join(model_dir,filename)ifnotos.path.exists(cached_file):sys.stderr.write('Downloading: "{}" to {}\n'.format(url,cached_file))hash_prefix=Noneifcheck_hash:r=HASH_REGEX.search(filename)# r is Optional[Match[str]]hash_prefix=r.group(1)ifrelseNonedownload_url_to_file(url,cached_file,hash_prefix,progress=progress)if_is_legacy_zip_format(cached_file):return_legacy_zip_load(cached_file,model_dir,map_location)returntorch.load(cached_file,map_location=map_location)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.