LazyConvTranspose2d¶
-
class
torch.nn.
LazyConvTranspose2d
(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)[source]¶ A
torch.nn.ConvTranspose2d
module with lazy initialization of thein_channels
argument of theConvTranspose2d
that is inferred from theinput.size(1)
. The attributes that will be lazily initialized are weight and bias.Check the
torch.nn.modules.lazy.LazyModuleMixin
for further documentation on lazy modules and their limitations.- Parameters
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) –
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Default: 0output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
-
cls_to_become
¶ alias of
torch.nn.modules.conv.ConvTranspose2d