[docs]classRMSprop(Optimizer):r"""Implements RMSprop algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ &\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\ &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t \hspace{8mm} \\ &\hspace{5mm} \tilde{v_t} \leftarrow v_t \\ &\hspace{5mm}if \: centered \\ &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\ &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\ &\hspace{5mm}if \: \mu > 0 \\ &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} + g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\ &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\ &\hspace{5mm} else \\ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton. and centered version `Generating Sequences With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. The implementation here takes the square root of the gradient average before adding epsilon (note that TensorFlow interchanges these two operations). The effective learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma` is the scheduled learning rate and :math:`v` is the weighted moving average of the squared gradient. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) momentum (float, optional): momentum factor (default: 0) alpha (float, optional): smoothing constant (default: 0.99) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) centered (bool, optional) : if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """def__init__(self,params,lr=1e-2,alpha=0.99,eps=1e-8,weight_decay=0,momentum=0,centered=False):ifnot0.0<=lr:raiseValueError("Invalid learning rate: {}".format(lr))ifnot0.0<=eps:raiseValueError("Invalid epsilon value: {}".format(eps))ifnot0.0<=momentum:raiseValueError("Invalid momentum value: {}".format(momentum))ifnot0.0<=weight_decay:raiseValueError("Invalid weight_decay value: {}".format(weight_decay))ifnot0.0<=alpha:raiseValueError("Invalid alpha value: {}".format(alpha))defaults=dict(lr=lr,momentum=momentum,alpha=alpha,eps=eps,centered=centered,weight_decay=weight_decay)super(RMSprop,self).__init__(params,defaults)def__setstate__(self,state):super(RMSprop,self).__setstate__(state)forgroupinself.param_groups:group.setdefault('momentum',0)group.setdefault('centered',False)
[docs]@torch.no_grad()defstep(self,closure=None):"""Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params_with_grad=[]grads=[]square_avgs=[]grad_avgs=[]momentum_buffer_list=[]forpingroup['params']:ifp.gradisNone:continueparams_with_grad.append(p)ifp.grad.is_sparse:raiseRuntimeError('RMSprop does not support sparse gradients')grads.append(p.grad)state=self.state[p]# State initializationiflen(state)==0:state['step']=0state['square_avg']=torch.zeros_like(p,memory_format=torch.preserve_format)ifgroup['momentum']>0:state['momentum_buffer']=torch.zeros_like(p,memory_format=torch.preserve_format)ifgroup['centered']:state['grad_avg']=torch.zeros_like(p,memory_format=torch.preserve_format)square_avgs.append(state['square_avg'])ifgroup['momentum']>0:momentum_buffer_list.append(state['momentum_buffer'])ifgroup['centered']:grad_avgs.append(state['grad_avg'])state['step']+=1F.rmsprop(params_with_grad,grads,square_avgs,grad_avgs,momentum_buffer_list,lr=group['lr'],alpha=group['alpha'],eps=group['eps'],weight_decay=group['weight_decay'],momentum=group['momentum'],centered=group['centered'])returnloss
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.