Source code for torch.fx._symbolic_trace

import builtins
import functools
import inspect
import math
import os
from types import CodeType, FunctionType, ModuleType
from typing import Any, Dict, NamedTuple, Optional, Set, Tuple, Type, List, Callable, Union
from itertools import chain
import torch
import torch._C._fx  # type: ignore[import]
from torch._C import ScriptObject  # type: ignore[attr-defined]
import torch.utils._pytree as pytree

import sys
from ._compatibility import compatibility
from .node import Argument, map_aggregate, base_types
from .graph import Graph, _PyTreeInfo
from .graph_module import GraphModule
from .proxy import TracerBase, Proxy, ParameterProxy


# These need to run in global scope to handle nested calls correctly
_orig_module_call : Callable = torch.nn.Module.__call__
_orig_module_getattr : Callable = torch.nn.Module.__getattr__

_proxyable_classes : Dict[Type, None] = {}

class ProxyableClassMeta(type):
    ProxyableClassMeta allows you to make construction of a given Python class
    symbolically traceable. For example::

        import torch
        import torch.fx

        class TensorPair(metaclass=torch.fx.ProxyableClassMeta):
            def __init__(self, left, right):
                self.left, self.right = left, right

            def add(self, other):
                l = self.left + other.left
                r = self.right + other.right
                return TensorPair(l, r)

            def mul(self, other):
                l = self.left * other.left
                r = self.right * other.right
                return TensorPair(l, r)

        def use_tensor_pair_ctor(x : TensorPair, y : torch.Tensor):
            s = x.add(TensorPair(y, y))
            return s.mul(x)

        x = TensorPair(torch.randn(5, 3), torch.randn(5, 3))
        y = torch.randn(5, 3)
        ref_out = use_tensor_pair_ctor(x, y)

        traced = torch.fx.symbolic_trace(use_tensor_pair_ctor)
        def forward(self, x : __main___TensorPair, y : torch.Tensor):
            tensor_pair = __main___TensorPair(y, y);  y = None
            add = x.add(tensor_pair);  tensor_pair = None
            mul = add.mul(x);  add = x = None
            return mul

    From this example, we can see that contruction of a class (``TensorPair``)
    defined with ``ProxyableClassMeta`` as metaclass can be recorded in symbolic
    def __init__(cls, name, bases, attrs):
        super().__init__(name, bases, attrs)

    def __call__(cls, *args, **kwargs):
        instance = cls.__new__(cls)  # type: ignore[call-overload]

        found_proxies = []

        def check_proxy(a):
            if isinstance(a, Proxy):

        map_aggregate(args, check_proxy)
        map_aggregate(kwargs, check_proxy)

        if len(found_proxies) != 0:
            tracer = found_proxies[0].tracer
            return tracer.create_proxy('call_function', cls, args, kwargs)
            cls.__init__(instance, *args, **kwargs)  # type: ignore[misc]
            return instance

def _patch_function(fn: FunctionType, nargs: int) -> FunctionType:
    co = fn.__code__
    co_flags = co.co_flags & ~HAS_VARSTUFF
    co_args : tuple
    if hasattr(co, "co_posonlyargcount"):
        co_args = (
            nargs, 0,
            0, co.co_nlocals, co.co_stacksize,
            co_flags, co.co_code, co.co_consts, co.co_names,
            co.co_varnames, co.co_filename, co.co_name,
            co.co_firstlineno, co.co_lnotab, co.co_freevars,
        co_args = (
            nargs, 0, co.co_nlocals,
            co.co_stacksize, co_flags, co.co_code, co.co_consts,
            co.co_names, co.co_varnames, co.co_filename,
            co.co_name, co.co_firstlineno, co.co_lnotab,
            co.co_freevars, co.co_cellvars)
    new_code = CodeType(*co_args)  # type: ignore[arg-type]
    return FunctionType(new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__)

    # we need to insert placeholder nodes for *args and **kwargs
    # we can't call this function normally, otherwise it would try to unpack them
    # instead, let's make python think that args and kwargs are normal variables

class _CPatchManager(object):
    Calls patch_function in order to intercept functions at the C-extension level
    def __init__(self, tracer):
        self.tracer = tracer
        patched_fns = [torch.randn, torch.rand, torch.randint]

        def patched_impl(to_patch, args, kwargs):
            return tracer.create_proxy('call_function', to_patch, args, kwargs)

        c_patch_enabled = True

        def patched_in(to_patch, args, kwargs):
            nonlocal c_patch_enabled
                c_patch_enabled = False
                r = patched_impl(to_patch, args, kwargs)
                c_patch_enabled = True
            return r

        def trace_func(frame, action, arg):
            if action == 'c_call':
                if c_patch_enabled:
                    if arg in patched_fns:
                        torch._C._fx.patch_function(arg, patched_in)

        self.func = trace_func

    def __enter__(self):
        if self.tracer.enable_cpatching:

    def __exit__(self, type, value, tb):

class PHBase(object):
    Object representing an input placeholder to `concrete_args`
    def __repr__(self):
        return 'PH'

PH = PHBase()

[docs]@compatibility(is_backward_compatible=True) class Tracer(TracerBase): # Reference: # The first line of this docstring overrides the one Sphinx generates for the # documentation. We need it so that Sphinx doesn't leak `math`s path from the # build environment (e.g. `<module 'math' from '/leaked/path'). """Tracer(autowrap_modules=(math,), autowrap_functions=(), enable_cpatching=False) ``Tracer`` is the class that implements the symbolic tracing functionality of ``torch.fx.symbolic_trace``. A call to ``symbolic_trace(m)`` is equivalent to ``Tracer().trace(m)``. Tracer can be subclassed to override various behaviors of the tracing process. The different behaviors that can be overridden are described in the docstrings of the methods on this class. """ # Not checking BC on this API because the default value for `autowrap_modules` # includes the local filepath to the `math` module, which would jitter # across machines. @compatibility(is_backward_compatible=True) def __init__(self, autowrap_modules: Tuple[ModuleType] = (math, ), autowrap_functions: Tuple[Callable, ...] = (), enable_cpatching: bool = False, param_shapes_constant: bool = False) -> None: # This method's signature is overridden by the first line of this class' # docstring. If this method's signature is modified, the signature that # overrides it also should be modified accordingly. """ Construct a Tracer object. Args: autowrap_modules (Tuple[ModuleType]): defaults to `(math, )`, Python modules whose functions should be wrapped automatically without needing to use fx.wrap(). Backward-compatibility for this parameter is guaranteed. autowrap_function (Tuple[Callable, ...]): defaults to `()`, Python functions that should be wrapped automatically without needing to use fx.wrap(). Backward compabilibility for this parameter is guaranteed. param_shapes_constant (bool): When this flag is set, calls to shape, size and a few other shape like attributes of a module's parameter will be evaluted directly, rather than returning a new Proxy value for an attribute access. Backward compatibility for this parameter is guaranteed. enable_cpatching (bool): defaults to `False`, Allows you to enable/disable monkeypatching of torch functions at the C-level (which captures functins like randn). C-level monkeypatching works by directly modifying the PyCFunctionObject* so that calling it returns a different function. Turning this on is likely to slow down tracing by 1.5-3x. This parameter is experimental and its backward-compatibility is NOT guaranteed. """ super().__init__() # Functions we will eagerly wrap when we see them while tracing # this captures both `math.sqrt()` and `from math import sqrt` automatically self._autowrap_function_ids: Set[int] = { id(value) for name, value in chain(*[m.__dict__.items() for m in autowrap_modules]) if not name.startswith("_") and callable(value)} self._autowrap_function_ids.update(set([id(f) for f in autowrap_functions])) # Python modules to apply autowrap to at the start, in addition to # modules we see while tracing self._autowrap_search: List[ModuleType] = list(autowrap_modules) self.enable_cpatching = enable_cpatching self.param_shapes_constant = param_shapes_constant self.submodule_paths: Optional[Dict[torch.nn.Module, str]] = None
[docs] @compatibility(is_backward_compatible=True) def create_arg(self, a: Any) -> 'Argument': """ A method to specify the behavior of tracing when preparing values to be used as arguments to nodes in the ``Graph``. By default, the behavior includes: #. Iterate through collection types (e.g. tuple, list, dict) and recursively call ``create_args`` on the elements. #. Given a Proxy object, return a reference to the underlying IR ``Node`` #. Given a non-Proxy Tensor object, emit IR for various cases: * For a Parameter, emit a ``get_attr`` node referring to that Parameter * For a non-Parameter Tensor, store the Tensor away in a special attribute referring to that attribute. This method can be overridden to support more types. Args: a (Any): The value to be emitted as an ``Argument`` in the ``Graph``. Returns: The value ``a`` converted into the appropriate ``Argument`` """ # The base tracer is used to construct Graphs when there is no associated # module hierarchy, so it can never create parameter references. # The default tracer adds the ability to refer to parameters when # tracing modules. if isinstance(a, torch.nn.Parameter): for n, p in self.root.named_parameters(): if a is p: return self.create_node('get_attr', n, (), {}) raise NameError('parameter is not a member of this module') elif isinstance(a, torch.Tensor): for n_, p_ in self.root.named_buffers(): if a is p_: return self.create_node('get_attr', n_, (), {}) elif isinstance(a, torch.nn.Module): for n_, p_ in self.root.named_modules(): if a is p_: return self.create_node('get_attr', n_, (), {}) # For NamedTuple instances that appear literally as args, we emit # a node to construct the NamedTuple and use that Node as the argument. if isinstance(a, tuple) and hasattr(a, '_fields'): args = tuple(self.create_arg(elem) for elem in a) return self.create_node('call_function', a.__class__, args, {}) # Tensors do not have a reliable string repr() from which they can be # constructed (and we probably don't want to rely on that, either), so # for any constant Tensor values we encounter, first search for if they # are an attribute of some module in the module hierarchy. If so, emit # a get_attr to retrieve that tensor. Otherwise, we'll store away the # tensor value into a special attribute on the Module s.t. we can # retrieve it with a get_attr. if isinstance(a, (torch.Tensor, ScriptObject)): qualname : Optional[str] = self.tensor_attrs.get(a) # Tensor was not found in the Module hierarchy, stow it away in a # special attribute and set the qualname to refer to that if not qualname: i = 0 while True: qualname = f'_tensor_constant{i}' if not hasattr(self.root, qualname): break i += 1 setattr(self.root, qualname, a) return self.create_node('get_attr', qualname, (), {}) if type(a) in _proxyable_classes: # This is an instance of a proxyable class for which we did not # witness its construction. Intern this as a constant attribute # TODO: binary search i = 0 while True: qualname = f'_{a.__class__.__name__}_constant_{i}' if not hasattr(self.root, qualname): break i += 1 setattr(self.root, qualname, a) return self.create_node('get_attr', qualname, (), {}) return super().create_arg(a)
[docs] @compatibility(is_backward_compatible=True) def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: """ A method to specify whether a given ``nn.Module`` is a "leaf" module. Leaf modules are the atomic units that appear in the IR, referenced by ``call_module`` calls. By default, Modules in the PyTorch standard library namespace (torch.nn) are leaf modules. All other modules are traced through and their constituent ops are recorded, unless specified otherwise via this parameter. Args: m (Module): The module being queried about module_qualified_name (str): The path to root of this module. For example, if you have a module hierarchy where submodule ``foo`` contains submodule ``bar``, which contains submodule ``baz``, that module will appear with the qualified name ```` here. """ return m.__module__.startswith('torch.nn') and not isinstance(m, torch.nn.Sequential)
[docs] @compatibility(is_backward_compatible=True) def path_of_module(self, mod : torch.nn.Module) -> str: """ Helper method to find the qualified name of ``mod`` in the Module hierarchy of ``root``. For example, if ``root`` has a submodule named ``foo``, which has a submodule named ``bar``, passing ``bar`` into this function will return the string "". Args: mod (str): The ``Module`` to retrieve the qualified name for. """ # Prefer the O(1) algorithm if self.submodule_paths: path = self.submodule_paths.get(mod) if path is None: raise NameError('module is not installed as a submodule') assert isinstance(path, str) return path # O(N^2) fallback in the case that we didn't store the submodule # paths. else: for n, p in self.root.named_modules(): if mod is p: return n raise NameError('module is not installed as a submodule')
[docs] @compatibility(is_backward_compatible=True) def call_module(self, m: torch.nn.Module, forward: Callable[..., Any], args : Tuple[Any, ...], kwargs : Dict[str, Any]) -> Any: """ Method that specifies the behavior of this ``Tracer`` when it encounters a call to an ``nn.Module`` instance. By default, the behavior is to check if the called module is a leaf module via ``is_leaf_module``. If it is, emit a ``call_module`` node referring to ``m`` in the ``Graph``. Otherwise, call the ``Module`` normally, tracing through the operations in its ``forward`` function. This method can be overridden to--for example--create nested traced GraphModules, or any other behavior you would want while tracing across ``Module`` boundaries. Args: m (Module): The module for which a call is being emitted forward (Callable): The forward() method of the ``Module`` to be invoked args (Tuple): args of the module callsite kwargs (Dict): kwargs of the module callsite Return: The return value from the Module call. In the case that a ``call_module`` node was emitted, this is a ``Proxy`` value. Otherwise, it is whatever value was returned from the ``Module`` invocation. """ module_qualified_name = self.path_of_module(m) if not self.is_leaf_module(m, module_qualified_name): return forward(*args, **kwargs) return self.create_proxy('call_module', module_qualified_name, args, kwargs)
# This method will be refactored
[docs] @compatibility(is_backward_compatible=False) def create_args_for_root(self, root_fn, is_module, concrete_args=None): """ Create ``placeholder`` nodes corresponding to the signature of the ``root`` Module. This method introspects root's signature and emits those nodes accordingly, also supporting ``*args`` and ``**kwargs``. """ # In some cases, a function or method has been decorated with a wrapper # defined via ``functools.wraps``. In this case, the outer code object # will likely not contain the actual parameters we care about, so unwrap # the function to get to the innermost callable. fn_for_analysis = inspect.unwrap(root_fn) co = fn_for_analysis.__code__ total_args = co.co_argcount + co.co_kwonlyargcount orig_args = list(co.co_varnames) names_iter = iter(co.co_varnames) args : List[Any] = [] skip_arg_idx = 0 if is_module: if total_args == 0: raise RuntimeError('``self`` argument cannot be part of *args expansion!') skip_arg_idx = 1 next(names_iter) # skip self args.append(self.root) sig = inspect.signature(fn_for_analysis) def proxy_placeholder(name: str): if concrete_args is not None and name in concrete_args : cnt = 0 def replace_ph(x): nonlocal cnt cnt += 1 out = self.create_proxy('placeholder', f'{name}_{str(cnt)}', (), {}) if x == PH: return out # Union[int, bool] == bool in Python <= 3.6 if type(x) == bool or type(x) in base_types and type(x) != torch.Tensor: torch._assert(out == x, f"{name} has been specialized to have value {x}") else: torch.warnings.warn( "Was not able to add assertion to guarantee correct inputs to " "specialized function. It is up to the user to make sure that your inputs match the " "inputs you specialized the function with." ) return x return pytree.tree_map(replace_ph, concrete_args[name]) if name[0] == '*': default = () else: param = sig.parameters[name] default = () if param.default is inspect.Parameter.empty else (param.default,) # type: ignore[assignment] return self.create_proxy('placeholder', name, default, {}, type_expr=fn_for_analysis.__annotations__.get(name, None)) arg_names = [next(names_iter) for idx in range(skip_arg_idx, total_args)] if isinstance(concrete_args, tuple): assert(len(arg_names) == len(concrete_args)) concrete_args = {name: val for name, val in zip(arg_names, concrete_args)} args.extend(proxy_placeholder(names) for names in arg_names) if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF: # TODO: type annotations for *args and **kwargs if co.co_flags & inspect.CO_VARARGS: args.append(proxy_placeholder('*' + next(names_iter))) if co.co_flags & inspect.CO_VARKEYWORDS: args.append(proxy_placeholder('**' + next(names_iter))) root_fn = _patch_function(root_fn, len(args)) flat_args, in_spec = pytree.tree_flatten(tuple(args)) if any(not isinstance(i, pytree.LeafSpec) for i in in_spec.children_specs): # In the case that we have pytree-flattened inputs in # `concrete_args`, generate a flattening wrapper around the # original root function and return that. self.graph._pytree_info = _PyTreeInfo(orig_args[:total_args], in_spec, None) def flatten_fn(*args): tree_args = pytree.tree_unflatten(list(args), in_spec) tree_out = root_fn(*tree_args) out_args, out_spec = pytree.tree_flatten(tree_out) assert(self.graph._pytree_info is not None) self.graph._pytree_info = self.graph._pytree_info._replace(out_spec=out_spec) return out_args return flatten_fn, flat_args return root_fn, args
def _module_getattr(self, attr, attr_val, parameter_proxy_cache): if isinstance(attr_val, torch.nn.Parameter): for n, p in self.root.named_parameters(): if attr_val is p: if n not in parameter_proxy_cache: kwargs = {} if 'proxy_factory_fn' in inspect.signature(self.create_proxy).parameters: kwargs['proxy_factory_fn'] = (None if not self.param_shapes_constant else lambda node : ParameterProxy(self, node, n, attr_val)) val_proxy = self.create_proxy('get_attr', n, (), {}, **kwargs) # type: ignore[arg-type] parameter_proxy_cache[n] = val_proxy return parameter_proxy_cache[n] return attr_val
[docs] @compatibility(is_backward_compatible=True) def trace(self, root: Union[torch.nn.Module, Callable[..., Any]], concrete_args: Optional[Dict[str, Any]] = None) -> Graph: """ Trace ``root`` and return the corresponding FX ``Graph`` representation. ``root`` can either be an ``nn.Module`` instance or a Python callable. Note that after this call, ``self.root`` may be different from the ``root`` passed in here. For example, when a free function is passed to ``trace()``, we will create an ``nn.Module`` instance to use as the root and add embedded constants to. Args: root (Union[Module, Callable]): Either a ``Module`` or a function to be traced through. Backwards-compatibility for this parameter is guaranteed. concrete_args (Optional[Dict[str, any]]): Concrete arguments that should not be treated as Proxies. This parameter is experimental and its backwards-compatibility is *NOT* guaranteed. Returns: A ``Graph`` representing the semantics of the passed-in ``root``. """ if isinstance(root, torch.nn.Module): self.root = root fn = type(root).forward self.submodule_paths = {mod: name for name, mod in root.named_modules()} else: self.root = torch.nn.Module() fn = root tracer_cls: Optional[Type['Tracer']] = getattr(self, '__class__', None) self.graph = Graph(tracer_cls=tracer_cls) # When we encounter a Tensor value that's not a parameter, we look if it # is some other attribute on the model. Construct a dict mapping Tensor # values to the qualified name here for efficiency. This is used downstream # in create_arg self.tensor_attrs : Dict[Union[torch.Tensor, ScriptObject], str] = {} def collect_tensor_attrs(m : torch.nn.Module, prefix_atoms : List[str]): for k, v in m.__dict__.items(): if isinstance(v, (torch.Tensor, ScriptObject)): self.tensor_attrs[v] = '.'.join(prefix_atoms + [k]) for k, v in m.named_children(): collect_tensor_attrs(v, prefix_atoms + [k]) collect_tensor_attrs(self.root, []) assert isinstance(fn, FunctionType) fn_globals = fn.__globals__ # run before it gets patched fn, args = self.create_args_for_root(fn, isinstance(root, torch.nn.Module), concrete_args) parameter_proxy_cache : Dict[str, Proxy] = {} # Reduce number of get_attr calls # Method dispatch on parameters is not recorded unless it's directly used. # Thus, we need to insert a proxy when __getattr__ requests a parameter. @functools.wraps(_orig_module_getattr) def module_getattr_wrapper(mod, attr): attr_val = _orig_module_getattr(mod, attr) return self._module_getattr(attr, attr_val, parameter_proxy_cache) @functools.wraps(_orig_module_call) def module_call_wrapper(mod, *args, **kwargs): def forward(*args, **kwargs): return _orig_module_call(mod, *args, **kwargs) _autowrap_check(patcher, getattr(getattr(mod, "forward", mod), "__globals__", {}), self._autowrap_function_ids) return self.call_module(mod, forward, args, kwargs) with _CPatchManager(self): with _Patcher() as patcher: # allow duplicate patches to support the case of nested calls patcher.patch_method(torch.nn.Module, "__getattr__", module_getattr_wrapper, deduplicate=False) patcher.patch_method(torch.nn.Module, "__call__", module_call_wrapper, deduplicate=False) _patch_wrapped_functions(patcher) _autowrap_check(patcher, fn_globals, self._autowrap_function_ids) for module in self._autowrap_search: _autowrap_check(patcher, module.__dict__, self._autowrap_function_ids) self.create_node('output', 'output', (self.create_arg(fn(*args)),), {}, type_expr=fn.__annotations__.get('return', None)) self.submodule_paths = None return self.graph
# List of pairs of (global dict, function name) functions # to patch for the purposes of the wrap() API. _wrapped_fns_to_patch : List[Tuple[dict, str]] = [] # List of methods on classes to wrap (class type, function name) # this currently only works for Tensor.* methods that aren't traced properly _wrapped_methods_to_patch : List[Tuple[type, str]] = [] if os.environ.get("FX_PATCH_GETITEM") == "1": # This change is needed to trace models like PositionalEmbedding from BERT: # # but causes issues in quantization documented here: # # once that is fixed we can make this the default behavior. _wrapped_methods_to_patch.append((torch.Tensor, "__getitem__")) def _find_proxy(*objects_to_search): """ Recursively search a data structure for a Proxy() and return it, return None if not found. """ proxy = None def find_proxy(x): nonlocal proxy if isinstance(x, Proxy): proxy = x map_aggregate(objects_to_search, find_proxy) return proxy def _create_wrapped_func(orig_fn): @functools.wraps(orig_fn) def wrapped(*args, **kwargs): """ Given an closed-over ``orig_function`` to invoke, search the args and kwargs for a Proxy object. If there is one, emit a ``call_function`` node to preserve the call to this leaf function directly. Otherwise, just return the results of this function call, as this function is not being traced. """ proxy = _find_proxy(args, kwargs) if proxy is not None: return_proxy = proxy.tracer.create_proxy('call_function', orig_fn, args, kwargs) return_proxy.node.meta['is_wrapped'] = True return return_proxy return orig_fn(*args, **kwargs) return wrapped def _create_wrapped_method(cls, name): orig_fn = getattr(cls, name) @functools.wraps(orig_fn) def wrapped(*args, **kwargs): """ Search the args and kwargs for a Proxy object. If there is one, emit a ``call_method`` node to preserve the call to this method directly. Otherwise, just return the results of this function call, as this function is not being traced. """ proxy = _find_proxy(args, kwargs) if proxy is not None: return proxy.tracer.create_proxy('call_method', name, args, kwargs) return orig_fn(*args, **kwargs) return wrapped class _PatchedFn(NamedTuple): frame_dict : Any fn_name : str orig_fn : Any def revert(self): raise NotImplementedError() class _PatchedFnSetItem(_PatchedFn): def revert(self): self.frame_dict[self.fn_name] = self.orig_fn class _PatchedFnDel(_PatchedFn): def revert(self): del self.frame_dict[self.fn_name] class _PatchedFnSetAttr(_PatchedFn): def revert(self): setattr(self.frame_dict, self.fn_name, self.orig_fn) class _Patcher(object): def __init__(self): super(_Patcher, self).__init__() self.patches_made : List[_PatchedFn] = [] self.visited : Set[int] = set() def patch(self, frame_dict : Dict[str, Any], name : str, new_fn : Callable, deduplicate : bool = True): """ Replace frame_dict[name] with new_fn until we exit the context manager. """ new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined] if name not in frame_dict and hasattr(builtins, name): self.patches_made.append(_PatchedFnDel(frame_dict, name, None)) elif getattr(frame_dict[name], "__fx_already_patched", False): return # already patched, no need to do it again else: self.patches_made.append(_PatchedFnSetItem(frame_dict, name, frame_dict[name])) frame_dict[name] = new_fn def patch_method(self, cls: type, name : str, new_fn : Callable, deduplicate : bool = True): """ Replace with new_fn until we exit the context manager. """ new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined] orig_fn = getattr(cls, name) if getattr(orig_fn, "__fx_already_patched", False): return # already patched, no need to do it again self.patches_made.append(_PatchedFnSetAttr(cls, name, orig_fn)) setattr(cls, name, new_fn) def visit_once(self, thing: Any): """ Return True on the first call to with thing, otherwise false """ idx = id(thing) if idx in self.visited: return False self.visited.add(idx) return True def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): """ Undo all the changes made via self.patch() and self.patch_method() """ while self.patches_made: # unpatch in reverse order to handle duplicates correctly self.patches_made.pop().revert() self.visited.clear() def _patch_wrapped_functions(patcher : _Patcher): """ Go through ``_wrapped_fn_patch_table`` and, for each frame object, wrap the listed global functions in the `_create_wrapped_func` wrapper. """ for frame_dict, name in _wrapped_fns_to_patch: if name not in frame_dict and hasattr(builtins, name): orig_fn = getattr(builtins, name) else: orig_fn = frame_dict[name] patcher.patch(frame_dict, name, _create_wrapped_func(orig_fn)) for cls, name in _wrapped_methods_to_patch: patcher.patch_method(cls, name, _create_wrapped_method(cls, name)) def _autowrap_check(patcher : _Patcher, frame_dict : Dict[str, Any], function_ids : Set[int]): """ Some methods, like `math.sqrt` are common enough we want to automatically wrap them as we see them. This method searches a scope for them and patches them if found. """ if patcher.visit_once(frame_dict): for name, value in frame_dict.items(): if not name.startswith("_") and callable(value) and id(value) in function_ids: patcher.patch(frame_dict, name, _create_wrapped_func(value))
[docs]@compatibility(is_backward_compatible=True) def wrap(fn_or_name : Union[str, Callable]): """ This function can be called at module-level scope to register fn_or_name as a "leaf function". A "leaf function" will be preserved as a CallFunction node in the FX trace instead of being traced through:: # foo/bar/ def my_custom_function(x, y): return x * x + y * y torch.fx.wrap('my_custom_function') def fn_to_be_traced(x, y): # When symbolic tracing, the below call to my_custom_function will be inserted into # the graph rather than tracing it. return my_custom_function(x, y) This function can also equivalently be used as a decorator:: # foo/bar/ @torch.fx.wrap def my_custom_function(x, y): return x * x + y * y A wrapped function can be thought of a "leaf function", analogous to the concept of "leaf modules", that is, they are functions that are left as calls in the FX trace rather than traced through. Args: fn_or_name (Union[str, Callable]): The function or name of the global function to insert into the graph when it's called """ if not callable(fn_or_name) and not isinstance(fn_or_name, str): raise RuntimeError('Unsupported type for global function! Must be either a callable or ' 'string name') if hasattr(fn_or_name, '__code__'): assert not isinstance(fn_or_name, str) # to make mypy happy fn_name = fn_or_name.__code__.co_name else: assert isinstance(fn_or_name, str), "fn_or_name must be a global function or string name" fn_name = fn_or_name currentframe = inspect.currentframe() assert currentframe is not None f = currentframe.f_back assert f is not None if f.f_code.co_name != '<module>': raise NotImplementedError('wrap must be called at the top level of a module') # consider implementing Callable version of this via _autowrap_function_ids / _autowrap_search # semantics would be slightly different, but would add support `from x import wrapped_function` _wrapped_fns_to_patch.append((f.f_globals, fn_name)) return fn_or_name
[docs]@compatibility(is_backward_compatible=True) def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]], concrete_args: Optional[Dict[str, Any]] = None, enable_cpatching: bool = False) -> GraphModule: """ Symbolic tracing API Given an ``nn.Module`` or function instance ``root``, this function will return a ``GraphModule`` constructed by recording operations seen while tracing through ``root``. ``concrete_args`` allows you to partially specialize your function, whether it's to remove control flow or data structures. For example:: def f(a, b): if b == True: return a else: return a*2 FX can typically not trace through this due to the presence of control flow. However, we can use `concrete_args` to specialize on the value of `b` to trace through this. f = fx.symbolic_trace(f, concrete_args={'b': False}) assert f(3, False) == 6 Note that although you can still pass in different values of `b`, they will be ignored. We can also use `concrete_args` to eliminate data-structure handling from our function. This will use pytrees to flatten your input. To avoid overspecializing, pass in `fx.PH` for values that shouldn't be specialized. For example:: def f(x): out = 0 for v in x.values(): out += v return out f = fx.symbolic_trace(f, concrete_args={'x': {'a': fx.PH, 'b': fx.PH, 'c': fx.PH}}) assert f({'a': 1, 'b': 2, 'c': 4}) == 7 Args: root (Union[torch.nn.Module, Callable]): Module or function to be traced and converted into a Graph representation. concrete_args (Optional[Dict[str, any]]): Inputs to be partially specialized enable_cpatching: Enables C-level patching of functions (captures things like `torch.randn`) Returns: GraphModule: a Module created from the recorded operations from ``root``. """ tracer = Tracer(enable_cpatching=enable_cpatching) graph = tracer.trace(root, concrete_args) name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__ return GraphModule(tracer.root, graph, name)


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources