May 05, 2020

Updates & Improvements to PyTorch Tutorials

PyTorch.org provides researchers and developers with documentation, installation instructions, latest news, community projects, tutorials, and more. Today, we are introducing usability and content improvements including tutorials in additional categories, a new recipe format for quickly referencing common topics, sorting using tags, and an updated homepage.

Read More

April 21, 2020

PyTorch library updates including new model serving library

Along with the PyTorch 1.5 release, we are announcing new libraries for high-performance PyTorch model serving and tight integration with TorchElastic and Kubernetes. Additionally, we are releasing updated packages for torch_xla (Google Cloud TPUs), torchaudio, torchvision, and torchtext. All of these new libraries and enhanced capabilities are available today and accompany all of the core features released in PyTorch 1.5.

Read More

April 21, 2020

PyTorch 1.5 released, new and updated APIs including C++ frontend API parity with Python

Today, we’re announcing the availability of PyTorch 1.5, along with new and updated libraries. This release includes several major new API additions and improvements. PyTorch now includes a significant update to the C++ frontend, ‘channels last’ memory format for computer vision models, and a stable release of the distributed RPC framework used for model-parallel training. The release also has new APIs for autograd for hessians and jacobians, and an API that allows the creation of Custom C++ ...

Read More

March 26, 2020

Introduction to Quantization on PyTorch

It’s important to make efficient use of both server-side and on-device compute resources when developing machine learning applications. To support more efficient deployment on servers and edge devices, PyTorch added a support for model quantization using the familiar eager mode Python API.

Read More

January 15, 2020

PyTorch 1.4 released, domain libraries updated

Today, we’re announcing the availability of PyTorch 1.4, along with updates to the PyTorch domain libraries. These releases build on top of the announcements from NeurIPS 2019, where we shared the availability of PyTorch Elastic, a new classification framework for image and video, and the addition of Preferred Networks to the PyTorch community. For those that attended the workshops at NeurIPS, the content can be found here.

Read More

December 06, 2019

PyTorch adds new tools and libraries, welcomes Preferred Networks to its community

PyTorch continues to be used for the latest state-of-the-art research on display at the NeurIPS conference next week, making up nearly 70% of papers that cite a framework. In addition, we’re excited to welcome Preferred Networks, the maintainers of the Chainer framework, to the PyTorch community. Their teams are moving fully over to PyTorch for developing their ML capabilities and services.

Read More

December 06, 2019

OpenMined and PyTorch partner to launch fellowship funding for privacy-preserving ML community

Many applications of machine learning (ML) pose a range of security and privacy challenges.

Read More