Shortcuts

torchaudio.prototype.models.emformer_hubert_base

torchaudio.prototype.models.emformer_hubert_base(extractor_input_dim: int = 80, extractor_output_dim: int = 128, encoder_dropout: float = 0.1, aux_num_out: Optional[int] = None) Wav2Vec2Model[source]

Build Emformer HuBERT Model with 20 Emformer layers.

Parameters:
  • extractor_input_dim (int, optional) – The input dimension for feature extractor. (Default: 80)

  • extractor_output_dim (int, optional) – The output dimension after feature extractor. (Default: 128)

  • encoder_dropout (float, optional) – Dropout probability in Emformer. (Default: 0.1)

  • aux_num_out (int or None, optional) – Output dimension of aux layer for fine-tuning. (Default: None)

Returns:

The resulting torchaudio.models.Wav2Vec2Model model with a torchaudio.models.Emformer encoder.

Return type:

Wav2Vec2Model

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources