Source code for torch_xla.core.functions
import torch
import torch_xla
import torch_xla.core.xla_model as xm
class AllReduce(torch.autograd.Function):
@staticmethod
def forward(ctx, input, reduce_type, scale, groups):
ctx.reduce_type = reduce_type
ctx.scale = scale
output = xm.all_reduce(reduce_type, input, scale=scale, groups=groups)
ctx.save_for_backward(input, output)
return output
@staticmethod
def backward(ctx, grad_output):
input, output = ctx.saved_tensors
grad = grad_output * ctx.scale if ctx.scale != 1.0 else grad_output
if ctx.reduce_type == xm.REDUCE_SUM:
return grad, None, None, None
if ctx.reduce_type == xm.REDUCE_MUL:
# MUL is not supported by TPU
grad_scaler = torch.where(input != 0, output / input,
torch.zeros_like(input))
return grad * grad_scaler, None, None, None
if ctx.reduce_type == xm.REDUCE_MIN or ctx.reduce_type == xm.REDUCE_MAX:
return torch.where(input == output, grad,
torch.zeros_like(grad)), None, None, None
raise RuntimeError('Unsupported reduce type: {}'.format(ctx.reduce_type))
[docs]def all_reduce(reduce_type, value, scale=1.0, groups=None):
"""Performs an inplace reduce operation on the input tensor.
This is the same as `xm.all_reduce()` but supports autograd differentiation.
Args:
reduce_type (string): One of ``REDUCE_SUM``, ``REDUCE_MUL``, ``REDUCE_AND``,
``REDUCE_OR``, ``REDUCE_MIN`` and ``REDUCE_MIN``.
value (torch.Tensor): The to perform the all reduce op to.
scale (float): A default scaling value to be applied after the reduce.
Default: 1.0
groups (list, optional): A list of list, representing the replica groups for
the `all_reduce()` operation. Example: `[[0, 1, 2, 3], [4, 5, 6, 7]]`
defines two groups, one with the `[0, 1, 2, 3]` replicas and one with
the `[4, 5, 6, 7]` replicas. If `None` there will be only one group with
all the replicas in it.
Returns:
The reduced value across the selected replicas.
"""
return AllReduce.apply(value, reduce_type, scale, groups)
class AllGather(torch.autograd.Function):
@staticmethod
def forward(ctx, input, dim):
ctx.dim = dim
ctx.ordinal = xm.get_ordinal()
ctx.world_size = xm.xrt_world_size()
return xm.all_gather(input, dim=dim)
@staticmethod
def backward(ctx, grad_output):
slice_size = grad_output.size(ctx.dim) // ctx.world_size
return torch.narrow(grad_output.clone(), ctx.dim, ctx.ordinal * slice_size,
slice_size), None
[docs]def all_gather(value, dim=0):
"""Performs an all-gather operation along a given dimension.
This is the same as `xm.all_gather()` but supports autograd differentiation.
Args:
value (torch.Tensor): The input tensor.
dim (int): The gather dimension.
Default: 0
Returns:
A tensor which has, in the ``dim`` dimension, all the values from the
participating replicas.
"""
return AllGather.apply(value, dim)
[docs]def nms(boxes, scores, score_threshold, iou_threshold, output_size):
"""Performs a Non Maximal Suppression operation.
Args:
boxes (torch.Tensor): A `torch.Tensor` of shape `[N, 4]` listing the boxes
coordinates in `(y0, x0, y1, x1)` form.
scores (torch.Tensor): A `torch.Tensor` of shape `[N]` listing the scores
of each box.
score_threshold (torch.Tensor): The minimum score for a box to qualify as
valid.
iou_threshold (torch.Tensor): The minimum IOU (Intersection Over Union)
score to trigger overlap logic.
output_size (int): The maximum number of returned indices (must be lower or
equal to N).
Returns:
A tuple of `torch.Tensor` with the first element being the selected box
indices, and the second element being the number of valid boxes.
"""
return torch_xla._XLAC._xla_nms(boxes, scores, score_threshold, iou_threshold,
output_size)
def distributed_mm(w, x, split=1):
"""Performs a matrix multiplication with sharded weight.
Args:
w (torch.Tensor): The sharded weight, RHS of the matrix multiplication
operation. The weight shape is `N x Ko` where `Ko` is the shard
dimension size. Each ordinal will have its own copy of the weight.
x (torch.Tensor): The input tensor, LHS of the matrix multiplication
operation. The input shape is `WG x M` where `WG = Ko * WORLD_SIZE`.
split (int): The number of splits for the `M` dimension of `x`. Since
there is an `all_gather()` on such dimension, if `M` is big, a split
might be required in order to fit device memory.
Default: 1
Returns:
The result of the distributed matrix multiplication operation.
"""
ordinal = xm.get_ordinal()
# w = N x Ko
# WG = Ko * WORLD_SIZE
# x = WG x M
assert x.size(0) // xm.xrt_world_size() == w.size(1)
splits = []
if split != 1:
size = x.size(1)
assert size % split == 0
split_size = size // split
splits = torch.split(x, split_size, dim=1)
else:
splits.append(x)
results = []
for xs in splits:
# xg = WG x (M * WORLD_SIZE)
xg = all_gather(xs, dim=1)
# xgn = Ko x (M * WORLD_SIZE)
xgn = torch.narrow(xg, 0, ordinal * w.size(1), w.size(1))
# wxg = N x (M * WORLD_SIZE)
wxg = w @ xgn
# rwxg = N x (M * WORLD_SIZE)
rwxg = all_reduce(xm.REDUCE_SUM, wxg)
# wx = N x M
wx = torch.narrow(rwxg, 1, ordinal * xs.size(1), xs.size(1))
results.append(wx)
return torch.cat(results, dim=1) if len(results) > 1 else results[0]