Shortcuts

Source code for torch_xla.debug.metrics

from __future__ import print_function

import torch_xla


[docs]def counter_names(): """Retrieves all the currently active counter names.""" return torch_xla._XLAC._xla_counter_names()
[docs]def counter_value(name): """Returns the value of an active counter. Args: name (string): The name of the counter whose value needs to be retrieved. Returns: The counter value as integer. """ return torch_xla._XLAC._xla_counter_value(name)
[docs]def metric_names(): """Retrieves all the currently active metric names.""" return torch_xla._XLAC._xla_metric_names()
[docs]def metric_data(name): """Returns the data of an active metric. Args: name (string): The name of the metric whose data needs to be retrieved. Returns: The metric data, which is a tuple of (TOTAL_SAMPLES, ACCUMULATOR, SAMPLES). The `TOTAL_SAMPLES` is the total number of samples which have been posted to the metric. A metric retains only a given number of samples (in a circular buffer). The `ACCUMULATOR` is the sum of the samples over `TOTAL_SAMPLES`. The `SAMPLES` is a list of (TIME, VALUE) tuples. """ return torch_xla._XLAC._xla_metric_data(name)
[docs]def metrics_report(): """Retrieves a string containing the full metrics and counters report.""" return torch_xla._XLAC._xla_metrics_report()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources