Source code for torchvision.tv_tensors._bounding_boxes
from __future__ import annotations
from enum import Enum
from typing import Any, Mapping, Optional, Sequence, Tuple, Union
import torch
from torch.utils._pytree import tree_flatten
from ._tv_tensor import TVTensor
[docs]class BoundingBoxFormat(Enum):
"""[BETA] Coordinate format of a bounding box.
Available formats are
* ``XYXY``
* ``XYWH``
* ``CXCYWH``
"""
XYXY = "XYXY"
XYWH = "XYWH"
CXCYWH = "CXCYWH"
[docs]class BoundingBoxes(TVTensor):
"""[BETA] :class:`torch.Tensor` subclass for bounding boxes.
.. note::
There should be only one :class:`~torchvision.tv_tensors.BoundingBoxes`
instance per sample e.g. ``{"img": img, "bbox": BoundingBoxes(...)}``,
although one :class:`~torchvision.tv_tensors.BoundingBoxes` object can
contain multiple bounding boxes.
Args:
data: Any data that can be turned into a tensor with :func:`torch.as_tensor`.
format (BoundingBoxFormat, str): Format of the bounding box.
canvas_size (two-tuple of ints): Height and width of the corresponding image or video.
dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from
``data``.
device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a
:class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU.
requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and
``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
"""
format: BoundingBoxFormat
canvas_size: Tuple[int, int]
@classmethod
def _wrap(cls, tensor: torch.Tensor, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], check_dims: bool = True) -> BoundingBoxes: # type: ignore[override]
if check_dims:
if tensor.ndim == 1:
tensor = tensor.unsqueeze(0)
elif tensor.ndim != 2:
raise ValueError(f"Expected a 1D or 2D tensor, got {tensor.ndim}D")
if isinstance(format, str):
format = BoundingBoxFormat[format.upper()]
bounding_boxes = tensor.as_subclass(cls)
bounding_boxes.format = format
bounding_boxes.canvas_size = canvas_size
return bounding_boxes
def __new__(
cls,
data: Any,
*,
format: Union[BoundingBoxFormat, str],
canvas_size: Tuple[int, int],
dtype: Optional[torch.dtype] = None,
device: Optional[Union[torch.device, str, int]] = None,
requires_grad: Optional[bool] = None,
) -> BoundingBoxes:
tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad)
return cls._wrap(tensor, format=format, canvas_size=canvas_size)
@classmethod
def _wrap_output(
cls,
output: torch.Tensor,
args: Sequence[Any] = (),
kwargs: Optional[Mapping[str, Any]] = None,
) -> BoundingBoxes:
# If there are BoundingBoxes instances in the output, their metadata got lost when we called
# super().__torch_function__. We need to restore the metadata somehow, so we choose to take
# the metadata from the first bbox in the parameters.
# This should be what we want in most cases. When it's not, it's probably a mis-use anyway, e.g.
# something like some_xyxy_bbox + some_xywh_bbox; we don't guard against those cases.
flat_params, _ = tree_flatten(args + (tuple(kwargs.values()) if kwargs else ())) # type: ignore[operator]
first_bbox_from_args = next(x for x in flat_params if isinstance(x, BoundingBoxes))
format, canvas_size = first_bbox_from_args.format, first_bbox_from_args.canvas_size
if isinstance(output, torch.Tensor) and not isinstance(output, BoundingBoxes):
output = BoundingBoxes._wrap(output, format=format, canvas_size=canvas_size, check_dims=False)
elif isinstance(output, (tuple, list)):
output = type(output)(
BoundingBoxes._wrap(part, format=format, canvas_size=canvas_size, check_dims=False) for part in output
)
return output
def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override]
return self._make_repr(format=self.format, canvas_size=self.canvas_size)