Shortcuts

Source code for torchvision.tv_tensors._bounding_boxes

from __future__ import annotations

from enum import Enum
from typing import Any, Mapping, Optional, Sequence, Tuple, Union

import torch
from torch.utils._pytree import tree_flatten

from ._tv_tensor import TVTensor


[docs]class BoundingBoxFormat(Enum): """[BETA] Coordinate format of a bounding box. Available formats are * ``XYXY`` * ``XYWH`` * ``CXCYWH`` """ XYXY = "XYXY" XYWH = "XYWH" CXCYWH = "CXCYWH"
[docs]class BoundingBoxes(TVTensor): """[BETA] :class:`torch.Tensor` subclass for bounding boxes. .. note:: There should be only one :class:`~torchvision.tv_tensors.BoundingBoxes` instance per sample e.g. ``{"img": img, "bbox": BoundingBoxes(...)}``, although one :class:`~torchvision.tv_tensors.BoundingBoxes` object can contain multiple bounding boxes. Args: data: Any data that can be turned into a tensor with :func:`torch.as_tensor`. format (BoundingBoxFormat, str): Format of the bounding box. canvas_size (two-tuple of ints): Height and width of the corresponding image or video. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ format: BoundingBoxFormat canvas_size: Tuple[int, int] @classmethod def _wrap(cls, tensor: torch.Tensor, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], check_dims: bool = True) -> BoundingBoxes: # type: ignore[override] if check_dims: if tensor.ndim == 1: tensor = tensor.unsqueeze(0) elif tensor.ndim != 2: raise ValueError(f"Expected a 1D or 2D tensor, got {tensor.ndim}D") if isinstance(format, str): format = BoundingBoxFormat[format.upper()] bounding_boxes = tensor.as_subclass(cls) bounding_boxes.format = format bounding_boxes.canvas_size = canvas_size return bounding_boxes def __new__( cls, data: Any, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> BoundingBoxes: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, format=format, canvas_size=canvas_size) @classmethod def _wrap_output( cls, output: torch.Tensor, args: Sequence[Any] = (), kwargs: Optional[Mapping[str, Any]] = None, ) -> BoundingBoxes: # If there are BoundingBoxes instances in the output, their metadata got lost when we called # super().__torch_function__. We need to restore the metadata somehow, so we choose to take # the metadata from the first bbox in the parameters. # This should be what we want in most cases. When it's not, it's probably a mis-use anyway, e.g. # something like some_xyxy_bbox + some_xywh_bbox; we don't guard against those cases. flat_params, _ = tree_flatten(args + (tuple(kwargs.values()) if kwargs else ())) # type: ignore[operator] first_bbox_from_args = next(x for x in flat_params if isinstance(x, BoundingBoxes)) format, canvas_size = first_bbox_from_args.format, first_bbox_from_args.canvas_size if isinstance(output, torch.Tensor) and not isinstance(output, BoundingBoxes): output = BoundingBoxes._wrap(output, format=format, canvas_size=canvas_size, check_dims=False) elif isinstance(output, (tuple, list)): output = type(output)( BoundingBoxes._wrap(part, format=format, canvas_size=canvas_size, check_dims=False) for part in output ) return output def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr(format=self.format, canvas_size=self.canvas_size)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources