Source code for torchvision.transforms.v2.functional._utils
import functools
from typing import Any, Callable, Dict, List, Optional, Sequence, Type, Union
import torch
from torchvision import tv_tensors
_FillType = Union[int, float, Sequence[int], Sequence[float], None]
_FillTypeJIT = Optional[List[float]]
def is_pure_tensor(inpt: Any) -> bool:
return isinstance(inpt, torch.Tensor) and not isinstance(inpt, tv_tensors.TVTensor)
# {functional: {input_type: type_specific_kernel}}
_KERNEL_REGISTRY: Dict[Callable, Dict[Type, Callable]] = {}
def _kernel_tv_tensor_wrapper(kernel):
@functools.wraps(kernel)
def wrapper(inpt, *args, **kwargs):
# If you're wondering whether we could / should get rid of this wrapper,
# the answer is no: we want to pass pure Tensors to avoid the overhead
# of the __torch_function__ machinery. Note that this is always valid,
# regardless of whether we override __torch_function__ in our base class
# or not.
# Also, even if we didn't call `as_subclass` here, we would still need
# this wrapper to call wrap(), because the TVTensor type would be
# lost after the first operation due to our own __torch_function__
# logic.
output = kernel(inpt.as_subclass(torch.Tensor), *args, **kwargs)
return tv_tensors.wrap(output, like=inpt)
return wrapper
def _register_kernel_internal(functional, input_type, *, tv_tensor_wrapper=True):
registry = _KERNEL_REGISTRY.setdefault(functional, {})
if input_type in registry:
raise ValueError(f"Functional {functional} already has a kernel registered for type {input_type}.")
def decorator(kernel):
registry[input_type] = (
_kernel_tv_tensor_wrapper(kernel)
if issubclass(input_type, tv_tensors.TVTensor) and tv_tensor_wrapper
else kernel
)
return kernel
return decorator
def _name_to_functional(name):
import torchvision.transforms.v2.functional # noqa
try:
return getattr(torchvision.transforms.v2.functional, name)
except AttributeError:
raise ValueError(
f"Could not find functional with name '{name}' in torchvision.transforms.v2.functional."
) from None
_BUILTIN_DATAPOINT_TYPES = {
obj for obj in tv_tensors.__dict__.values() if isinstance(obj, type) and issubclass(obj, tv_tensors.TVTensor)
}
[docs]def register_kernel(functional, tv_tensor_cls):
"""[BETA] Decorate a kernel to register it for a functional and a (custom) tv_tensor type.
See :ref:`sphx_glr_auto_examples_transforms_plot_custom_tv_tensors.py` for usage
details.
"""
if isinstance(functional, str):
functional = _name_to_functional(name=functional)
elif not (
callable(functional)
and getattr(functional, "__module__", "").startswith("torchvision.transforms.v2.functional")
):
raise ValueError(
f"Kernels can only be registered on functionals from the torchvision.transforms.v2.functional namespace, "
f"but got {functional}."
)
if not (isinstance(tv_tensor_cls, type) and issubclass(tv_tensor_cls, tv_tensors.TVTensor)):
raise ValueError(
f"Kernels can only be registered for subclasses of torchvision.tv_tensors.TVTensor, "
f"but got {tv_tensor_cls}."
)
if tv_tensor_cls in _BUILTIN_DATAPOINT_TYPES:
raise ValueError(f"Kernels cannot be registered for the builtin tv_tensor classes, but got {tv_tensor_cls}")
return _register_kernel_internal(functional, tv_tensor_cls, tv_tensor_wrapper=False)
def _get_kernel(functional, input_type, *, allow_passthrough=False):
registry = _KERNEL_REGISTRY.get(functional)
if not registry:
raise ValueError(f"No kernel registered for functional {functional.__name__}.")
for cls in input_type.__mro__:
if cls in registry:
return registry[cls]
elif cls is tv_tensors.TVTensor:
# We don't want user-defined tv_tensors to dispatch to the pure Tensor kernels, so we explicit stop the
# MRO traversal before hitting torch.Tensor. We can even stop at tv_tensors.TVTensor, since we don't
# allow kernels to be registered for tv_tensors.TVTensor anyway.
break
if allow_passthrough:
return lambda inpt, *args, **kwargs: inpt
raise TypeError(
f"Functional F.{functional.__name__} supports inputs of type {registry.keys()}, "
f"but got {input_type} instead."
)
# This basically replicates _register_kernel_internal, but with a specialized wrapper for five_crop / ten_crop
# We could get rid of this by letting _register_kernel_internal take arbitrary functionals rather than wrap_kernel: bool
def _register_five_ten_crop_kernel_internal(functional, input_type):
registry = _KERNEL_REGISTRY.setdefault(functional, {})
if input_type in registry:
raise TypeError(f"Functional '{functional}' already has a kernel registered for type '{input_type}'.")
def wrap(kernel):
@functools.wraps(kernel)
def wrapper(inpt, *args, **kwargs):
output = kernel(inpt, *args, **kwargs)
container_type = type(output)
return container_type(tv_tensors.wrap(o, like=inpt) for o in output)
return wrapper
def decorator(kernel):
registry[input_type] = wrap(kernel) if issubclass(input_type, tv_tensors.TVTensor) else kernel
return kernel
return decorator