Source code for torchvision.transforms.v2.functional._misc
import math
from typing import List, Optional
import PIL.Image
import torch
from torch.nn.functional import conv2d, pad as torch_pad
from torchvision import tv_tensors
from torchvision.transforms._functional_tensor import _max_value
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
from torchvision.utils import _log_api_usage_once
from ._utils import _get_kernel, _register_kernel_internal
[docs]def normalize(
inpt: torch.Tensor,
mean: List[float],
std: List[float],
inplace: bool = False,
) -> torch.Tensor:
"""[BETA] See :class:`~torchvision.transforms.v2.Normalize` for details."""
if torch.jit.is_scripting():
return normalize_image(inpt, mean=mean, std=std, inplace=inplace)
_log_api_usage_once(normalize)
kernel = _get_kernel(normalize, type(inpt))
return kernel(inpt, mean=mean, std=std, inplace=inplace)
@_register_kernel_internal(normalize, torch.Tensor)
@_register_kernel_internal(normalize, tv_tensors.Image)
def normalize_image(image: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
if not image.is_floating_point():
raise TypeError(f"Input tensor should be a float tensor. Got {image.dtype}.")
if image.ndim < 3:
raise ValueError(f"Expected tensor to be a tensor image of size (..., C, H, W). Got {image.shape}.")
if isinstance(std, (tuple, list)):
divzero = not all(std)
elif isinstance(std, (int, float)):
divzero = std == 0
else:
divzero = False
if divzero:
raise ValueError("std evaluated to zero, leading to division by zero.")
dtype = image.dtype
device = image.device
mean = torch.as_tensor(mean, dtype=dtype, device=device)
std = torch.as_tensor(std, dtype=dtype, device=device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
if inplace:
image = image.sub_(mean)
else:
image = image.sub(mean)
return image.div_(std)
@_register_kernel_internal(normalize, tv_tensors.Video)
def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
return normalize_image(video, mean, std, inplace=inplace)
[docs]def gaussian_blur(inpt: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> torch.Tensor:
"""[BETA] See :class:`~torchvision.transforms.v2.GaussianBlur` for details."""
if torch.jit.is_scripting():
return gaussian_blur_image(inpt, kernel_size=kernel_size, sigma=sigma)
_log_api_usage_once(gaussian_blur)
kernel = _get_kernel(gaussian_blur, type(inpt))
return kernel(inpt, kernel_size=kernel_size, sigma=sigma)
def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
lim = (kernel_size - 1) / (2.0 * math.sqrt(2.0) * sigma)
x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device)
kernel1d = torch.softmax(x.pow_(2).neg_(), dim=0)
return kernel1d
def _get_gaussian_kernel2d(
kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device)
kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device)
kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x
return kernel2d
@_register_kernel_internal(gaussian_blur, torch.Tensor)
@_register_kernel_internal(gaussian_blur, tv_tensors.Image)
def gaussian_blur_image(
image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
# TODO: consider deprecating integers from sigma on the future
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
elif len(kernel_size) != 2:
raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
for ksize in kernel_size:
if ksize % 2 == 0 or ksize < 0:
raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
if sigma is None:
sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]
else:
if isinstance(sigma, (list, tuple)):
length = len(sigma)
if length == 1:
s = float(sigma[0])
sigma = [s, s]
elif length != 2:
raise ValueError(f"If sigma is a sequence, its length should be 2. Got {length}")
elif isinstance(sigma, (int, float)):
s = float(sigma)
sigma = [s, s]
else:
raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
for s in sigma:
if s <= 0.0:
raise ValueError(f"sigma should have positive values. Got {sigma}")
if image.numel() == 0:
return image
dtype = image.dtype
shape = image.shape
ndim = image.ndim
if ndim == 3:
image = image.unsqueeze(dim=0)
elif ndim > 4:
image = image.reshape((-1,) + shape[-3:])
fp = torch.is_floating_point(image)
kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype if fp else torch.float32, device=image.device)
kernel = kernel.expand(shape[-3], 1, kernel.shape[0], kernel.shape[1])
output = image if fp else image.to(dtype=torch.float32)
# padding = (left, right, top, bottom)
padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
output = torch_pad(output, padding, mode="reflect")
output = conv2d(output, kernel, groups=shape[-3])
if ndim == 3:
output = output.squeeze(dim=0)
elif ndim > 4:
output = output.reshape(shape)
if not fp:
output = output.round_().to(dtype=dtype)
return output
@_register_kernel_internal(gaussian_blur, PIL.Image.Image)
def _gaussian_blur_image_pil(
image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> PIL.Image.Image:
t_img = pil_to_tensor(image)
output = gaussian_blur_image(t_img, kernel_size=kernel_size, sigma=sigma)
return to_pil_image(output, mode=image.mode)
@_register_kernel_internal(gaussian_blur, tv_tensors.Video)
def gaussian_blur_video(
video: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
return gaussian_blur_image(video, kernel_size, sigma)
[docs]def to_dtype(inpt: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
"""[BETA] See :func:`~torchvision.transforms.v2.ToDtype` for details."""
if torch.jit.is_scripting():
return to_dtype_image(inpt, dtype=dtype, scale=scale)
_log_api_usage_once(to_dtype)
kernel = _get_kernel(to_dtype, type(inpt))
return kernel(inpt, dtype=dtype, scale=scale)
def _num_value_bits(dtype: torch.dtype) -> int:
if dtype == torch.uint8:
return 8
elif dtype == torch.int8:
return 7
elif dtype == torch.int16:
return 15
elif dtype == torch.int32:
return 31
elif dtype == torch.int64:
return 63
else:
raise TypeError(f"Number of value bits is only defined for integer dtypes, but got {dtype}.")
@_register_kernel_internal(to_dtype, torch.Tensor)
@_register_kernel_internal(to_dtype, tv_tensors.Image)
def to_dtype_image(image: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
if image.dtype == dtype:
return image
elif not scale:
return image.to(dtype)
float_input = image.is_floating_point()
if torch.jit.is_scripting():
# TODO: remove this branch as soon as `dtype.is_floating_point` is supported by JIT
float_output = torch.tensor(0, dtype=dtype).is_floating_point()
else:
float_output = dtype.is_floating_point
if float_input:
# float to float
if float_output:
return image.to(dtype)
# float to int
if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
image.dtype == torch.float64 and dtype == torch.int64
):
raise RuntimeError(f"The conversion from {image.dtype} to {dtype} cannot be performed safely.")
# For data in the range `[0.0, 1.0]`, just multiplying by the maximum value of the integer range and converting
# to the integer dtype is not sufficient. For example, `torch.rand(...).mul(255).to(torch.uint8)` will only
# be `255` if the input is exactly `1.0`. See https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
# for a detailed analysis.
# To mitigate this, we could round before we convert to the integer dtype, but this is an extra operation.
# Instead, we can also multiply by the maximum value plus something close to `1`. See
# https://github.com/pytorch/vision/pull/2078#issuecomment-613524965 for details.
eps = 1e-3
max_value = float(_max_value(dtype))
# We need to scale first since the conversion would otherwise turn the input range `[0.0, 1.0]` into the
# discrete set `{0, 1}`.
return image.mul(max_value + 1.0 - eps).to(dtype)
else:
# int to float
if float_output:
return image.to(dtype).mul_(1.0 / _max_value(image.dtype))
# int to int
num_value_bits_input = _num_value_bits(image.dtype)
num_value_bits_output = _num_value_bits(dtype)
if num_value_bits_input > num_value_bits_output:
return image.bitwise_right_shift(num_value_bits_input - num_value_bits_output).to(dtype)
else:
return image.to(dtype).bitwise_left_shift_(num_value_bits_output - num_value_bits_input)
# We encourage users to use to_dtype() instead but we keep this for BC
[docs]def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
"""[BETA] [DEPRECATED] Use to_dtype() instead."""
return to_dtype_image(image, dtype=dtype, scale=True)
@_register_kernel_internal(to_dtype, tv_tensors.Video)
def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
return to_dtype_image(video, dtype, scale=scale)
@_register_kernel_internal(to_dtype, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
@_register_kernel_internal(to_dtype, tv_tensors.Mask, tv_tensor_wrapper=False)
def _to_dtype_tensor_dispatch(inpt: torch.Tensor, dtype: torch.dtype, scale: bool = False) -> torch.Tensor:
# We don't need to unwrap and rewrap here, since TVTensor.to() preserves the type
return inpt.to(dtype)