Shortcuts

Source code for torchvision.models.quantization.mobilenetv2

from functools import partial
from typing import Any, Optional, Union

from torch import nn, Tensor
from torch.ao.quantization import DeQuantStub, QuantStub
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2

from ...ops.misc import Conv2dNormActivation
from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from .utils import _fuse_modules, _replace_relu, quantize_model


__all__ = [
    "QuantizableMobileNetV2",
    "MobileNet_V2_QuantizedWeights",
    "mobilenet_v2",
]


class QuantizableInvertedResidual(InvertedResidual):
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)

    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        for idx in range(len(self.conv)):
            if type(self.conv[idx]) is nn.Conv2d:
                _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)


class QuantizableMobileNetV2(MobileNetV2):
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        """
        MobileNet V2 main class

        Args:
           Inherits args from floating point MobileNetV2
        """
        super().__init__(*args, **kwargs)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x: Tensor) -> Tensor:
        x = self.quant(x)
        x = self._forward_impl(x)
        x = self.dequant(x)
        return x

    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        for m in self.modules():
            if type(m) is Conv2dNormActivation:
                _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
            if type(m) is QuantizableInvertedResidual:
                m.fuse_model(is_qat)


[docs]class MobileNet_V2_QuantizedWeights(WeightsEnum): IMAGENET1K_QNNPACK_V1 = Weights( url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 3504872, "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "qnnpack", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2", "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 71.658, "acc@5": 90.150, } }, "_ops": 0.301, "_file_size": 3.423, "_docs": """ These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_QNNPACK_V1
[docs]@register_model(name="quantized_mobilenet_v2") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1 if kwargs.get("quantize", False) else MobileNet_V2_Weights.IMAGENET1K_V1, ) ) def mobilenet_v2( *, weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV2: """ Constructs a MobileNetV2 architecture from `MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`_. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, returns a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights :members: .. autoclass:: torchvision.models.MobileNet_V2_Weights :members: :noindex: """ weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "qnnpack") model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources